Metamath Proof Explorer


Theorem prdsvscafval

Description: Scalar multiplication of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y = S 𝑠 R
prdsbasmpt.b B = Base Y
prdsvscaval.t · ˙ = Y
prdsvscaval.k K = Base S
prdsvscaval.s φ S V
prdsvscaval.i φ I W
prdsvscaval.r φ R Fn I
prdsvscaval.f φ F K
prdsvscaval.g φ G B
prdsvscafval.j φ J I
Assertion prdsvscafval φ F · ˙ G J = F R J G J

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y = S 𝑠 R
2 prdsbasmpt.b B = Base Y
3 prdsvscaval.t · ˙ = Y
4 prdsvscaval.k K = Base S
5 prdsvscaval.s φ S V
6 prdsvscaval.i φ I W
7 prdsvscaval.r φ R Fn I
8 prdsvscaval.f φ F K
9 prdsvscaval.g φ G B
10 prdsvscafval.j φ J I
11 1 2 3 4 5 6 7 8 9 prdsvscaval φ F · ˙ G = x I F R x G x
12 2fveq3 x = J R x = R J
13 eqidd x = J F = F
14 fveq2 x = J G x = G J
15 12 13 14 oveq123d x = J F R x G x = F R J G J
16 15 adantl φ x = J F R x G x = F R J G J
17 ovexd φ F R J G J V
18 11 16 10 17 fvmptd φ F · ˙ G J = F R J G J