Metamath Proof Explorer


Theorem prdsvscaval

Description: Scalar multiplication in a structure product is pointwise. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsbasmpt.y Y = S 𝑠 R
prdsbasmpt.b B = Base Y
prdsvscaval.t · ˙ = Y
prdsvscaval.k K = Base S
prdsvscaval.s φ S V
prdsvscaval.i φ I W
prdsvscaval.r φ R Fn I
prdsvscaval.f φ F K
prdsvscaval.g φ G B
Assertion prdsvscaval φ F · ˙ G = x I F R x G x

Proof

Step Hyp Ref Expression
1 prdsbasmpt.y Y = S 𝑠 R
2 prdsbasmpt.b B = Base Y
3 prdsvscaval.t · ˙ = Y
4 prdsvscaval.k K = Base S
5 prdsvscaval.s φ S V
6 prdsvscaval.i φ I W
7 prdsvscaval.r φ R Fn I
8 prdsvscaval.f φ F K
9 prdsvscaval.g φ G B
10 fnex R Fn I I W R V
11 7 6 10 syl2anc φ R V
12 7 fndmd φ dom R = I
13 1 5 11 2 12 4 3 prdsvsca φ · ˙ = y K , z B x I y R x z x
14 id y = F y = F
15 fveq1 z = G z x = G x
16 14 15 oveqan12d y = F z = G y R x z x = F R x G x
17 16 adantl φ y = F z = G y R x z x = F R x G x
18 17 mpteq2dv φ y = F z = G x I y R x z x = x I F R x G x
19 6 mptexd φ x I F R x G x V
20 13 18 8 9 19 ovmpod φ F · ˙ G = x I F R x G x