Metamath Proof Explorer


Theorem precsexlem1

Description: Lemma for surreal reciprocals. Calculate the value of the recursive left function at zero. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses precsexlem.1 No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
precsexlem.2 L = 1 st F
precsexlem.3 R = 2 nd F
Assertion precsexlem1 Could not format assertion : No typesetting found for |- ( L ` (/) ) = { 0s } with typecode |-

Proof

Step Hyp Ref Expression
1 precsexlem.1 Could not format F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) : No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
2 precsexlem.2 L = 1 st F
3 precsexlem.3 R = 2 nd F
4 2 fveq1i L = 1 st F
5 rdgfnon Could not format rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On : No typesetting found for |- rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On with typecode |-
6 1 fneq1i Could not format ( F Fn On <-> rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On ) : No typesetting found for |- ( F Fn On <-> rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On ) with typecode |-
7 5 6 mpbir F Fn On
8 0elon On
9 fvco2 F Fn On On 1 st F = 1 st F
10 7 8 9 mp2an 1 st F = 1 st F
11 1 fveq1i Could not format ( F ` (/) ) = ( rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ` (/) ) : No typesetting found for |- ( F ` (/) ) = ( rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ` (/) ) with typecode |-
12 opex Could not format <. { 0s } , (/) >. e. _V : No typesetting found for |- <. { 0s } , (/) >. e. _V with typecode |-
13 12 rdg0 Could not format ( rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ` (/) ) = <. { 0s } , (/) >. : No typesetting found for |- ( rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ` (/) ) = <. { 0s } , (/) >. with typecode |-
14 11 13 eqtri Could not format ( F ` (/) ) = <. { 0s } , (/) >. : No typesetting found for |- ( F ` (/) ) = <. { 0s } , (/) >. with typecode |-
15 14 fveq2i Could not format ( 1st ` ( F ` (/) ) ) = ( 1st ` <. { 0s } , (/) >. ) : No typesetting found for |- ( 1st ` ( F ` (/) ) ) = ( 1st ` <. { 0s } , (/) >. ) with typecode |-
16 snex Could not format { 0s } e. _V : No typesetting found for |- { 0s } e. _V with typecode |-
17 0ex V
18 16 17 op1st Could not format ( 1st ` <. { 0s } , (/) >. ) = { 0s } : No typesetting found for |- ( 1st ` <. { 0s } , (/) >. ) = { 0s } with typecode |-
19 15 18 eqtri Could not format ( 1st ` ( F ` (/) ) ) = { 0s } : No typesetting found for |- ( 1st ` ( F ` (/) ) ) = { 0s } with typecode |-
20 4 10 19 3eqtri Could not format ( L ` (/) ) = { 0s } : No typesetting found for |- ( L ` (/) ) = { 0s } with typecode |-