Metamath Proof Explorer


Theorem precsexlem10

Description: Lemma for surreal reciprocal. Show that the union of the left sets is less than the union of the right sets. Note that this is the first theorem in the surreal numbers to require the axiom of infinity. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypotheses precsexlem.1 No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
precsexlem.2 L = 1 st F
precsexlem.3 R = 2 nd F
precsexlem.4 φ A No
precsexlem.5 φ 0 s < s A
precsexlem.6 No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) with typecode |-
Assertion precsexlem10 φ L ω s R ω

Proof

Step Hyp Ref Expression
1 precsexlem.1 Could not format F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) : No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
2 precsexlem.2 L = 1 st F
3 precsexlem.3 R = 2 nd F
4 precsexlem.4 φ A No
5 precsexlem.5 φ 0 s < s A
6 precsexlem.6 Could not format ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) : No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) with typecode |-
7 fo1st 1 st : V onto V
8 fofun 1 st : V onto V Fun 1 st
9 7 8 ax-mp Fun 1 st
10 rdgfun Could not format Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) : No typesetting found for |- Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
11 1 funeqi Could not format ( Fun F <-> Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ) : No typesetting found for |- ( Fun F <-> Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ) with typecode |-
12 10 11 mpbir Fun F
13 funco Fun 1 st Fun F Fun 1 st F
14 9 12 13 mp2an Fun 1 st F
15 2 funeqi Fun L Fun 1 st F
16 14 15 mpbir Fun L
17 dcomex ω V
18 17 funimaex Fun L L ω V
19 16 18 ax-mp L ω V
20 19 uniex L ω V
21 20 a1i φ L ω V
22 fo2nd 2 nd : V onto V
23 fofun 2 nd : V onto V Fun 2 nd
24 22 23 ax-mp Fun 2 nd
25 funco Fun 2 nd Fun F Fun 2 nd F
26 24 12 25 mp2an Fun 2 nd F
27 3 funeqi Fun R Fun 2 nd F
28 26 27 mpbir Fun R
29 17 funimaex Fun R R ω V
30 28 29 ax-mp R ω V
31 30 uniex R ω V
32 31 a1i φ R ω V
33 funiunfv Fun L i ω L i = L ω
34 16 33 ax-mp i ω L i = L ω
35 1 2 3 4 5 6 precsexlem8 φ i ω L i No R i No
36 35 simpld φ i ω L i No
37 36 iunssd φ i ω L i No
38 34 37 eqsstrrid φ L ω No
39 funiunfv Fun R i ω R i = R ω
40 28 39 ax-mp i ω R i = R ω
41 35 simprd φ i ω R i No
42 41 iunssd φ i ω R i No
43 40 42 eqsstrrid φ R ω No
44 34 eleq2i b i ω L i b L ω
45 eliun b i ω L i i ω b L i
46 44 45 bitr3i b L ω i ω b L i
47 funiunfv Fun R j ω R j = R ω
48 28 47 ax-mp j ω R j = R ω
49 48 eleq2i c j ω R j c R ω
50 eliun c j ω R j j ω c R j
51 49 50 bitr3i c R ω j ω c R j
52 46 51 anbi12i b L ω c R ω i ω b L i j ω c R j
53 reeanv i ω j ω b L i c R j i ω b L i j ω c R j
54 52 53 bitr4i b L ω c R ω i ω j ω b L i c R j
55 omun i ω j ω i j ω
56 ssun1 i i j
57 1 2 3 precsexlem6 i ω i j ω i i j L i L i j
58 56 57 mp3an3 i ω i j ω L i L i j
59 55 58 syldan i ω j ω L i L i j
60 59 adantl φ i ω j ω L i L i j
61 60 sseld φ i ω j ω b L i b L i j
62 simpr i ω j ω j ω
63 ssun2 j i j
64 1 2 3 precsexlem7 j ω i j ω j i j R j R i j
65 63 64 mp3an3 j ω i j ω R j R i j
66 62 55 65 syl2anc i ω j ω R j R i j
67 66 sseld i ω j ω c R j c R i j
68 67 adantl φ i ω j ω c R j c R i j
69 4 ad2antrr φ i j ω b L i j c R i j A No
70 1 2 3 4 5 6 precsexlem8 φ i j ω L i j No R i j No
71 70 simpld φ i j ω L i j No
72 71 sselda φ i j ω b L i j b No
73 72 adantrr φ i j ω b L i j c R i j b No
74 69 73 mulscld φ i j ω b L i j c R i j A s b No
75 70 simprd φ i j ω R i j No
76 75 sselda φ i j ω c R i j c No
77 76 adantrl φ i j ω b L i j c R i j c No
78 69 77 mulscld φ i j ω b L i j c R i j A s c No
79 74 78 jca φ i j ω b L i j c R i j A s b No A s c No
80 1 2 3 4 5 6 precsexlem9 φ i j ω b L i j A s b < s 1 s c R i j 1 s < s A s c
81 80 simpld φ i j ω b L i j A s b < s 1 s
82 rsp b L i j A s b < s 1 s b L i j A s b < s 1 s
83 81 82 syl φ i j ω b L i j A s b < s 1 s
84 80 simprd φ i j ω c R i j 1 s < s A s c
85 rsp c R i j 1 s < s A s c c R i j 1 s < s A s c
86 84 85 syl φ i j ω c R i j 1 s < s A s c
87 83 86 anim12d φ i j ω b L i j c R i j A s b < s 1 s 1 s < s A s c
88 87 imp φ i j ω b L i j c R i j A s b < s 1 s 1 s < s A s c
89 1sno 1 s No
90 slttr A s b No 1 s No A s c No A s b < s 1 s 1 s < s A s c A s b < s A s c
91 89 90 mp3an2 A s b No A s c No A s b < s 1 s 1 s < s A s c A s b < s A s c
92 79 88 91 sylc φ i j ω b L i j c R i j A s b < s A s c
93 5 ad2antrr φ i j ω b L i j c R i j 0 s < s A
94 73 77 69 93 sltmul2d φ i j ω b L i j c R i j b < s c A s b < s A s c
95 92 94 mpbird φ i j ω b L i j c R i j b < s c
96 95 ex φ i j ω b L i j c R i j b < s c
97 55 96 sylan2 φ i ω j ω b L i j c R i j b < s c
98 61 68 97 syl2and φ i ω j ω b L i c R j b < s c
99 98 rexlimdvva φ i ω j ω b L i c R j b < s c
100 54 99 biimtrid φ b L ω c R ω b < s c
101 100 3impib φ b L ω c R ω b < s c
102 21 32 38 43 101 ssltd φ L ω s R ω