Metamath Proof Explorer


Theorem precsexlem11

Description: Lemma for surreal reciprocal. Show that the cut of the left and right sets is a multiplicative inverse for A . (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypotheses precsexlem.1 No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
precsexlem.2 L = 1 st F
precsexlem.3 R = 2 nd F
precsexlem.4 φ A No
precsexlem.5 φ 0 s < s A
precsexlem.6 No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) with typecode |-
precsexlem.7 Y = L ω | s R ω
Assertion precsexlem11 φ A s Y = 1 s

Proof

Step Hyp Ref Expression
1 precsexlem.1 Could not format F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) : No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
2 precsexlem.2 L = 1 st F
3 precsexlem.3 R = 2 nd F
4 precsexlem.4 φ A No
5 precsexlem.5 φ 0 s < s A
6 precsexlem.6 Could not format ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) : No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) with typecode |-
7 precsexlem.7 Y = L ω | s R ω
8 lltropt L A s R A
9 4 5 0elleft φ 0 s L A
10 9 snssd φ 0 s L A
11 ssrab2 x L A | 0 s < s x L A
12 11 a1i φ x L A | 0 s < s x L A
13 10 12 unssd φ 0 s x L A | 0 s < s x L A
14 sssslt1 L A s R A 0 s x L A | 0 s < s x L A 0 s x L A | 0 s < s x s R A
15 8 13 14 sylancr φ 0 s x L A | 0 s < s x s R A
16 1 2 3 4 5 6 precsexlem10 φ L ω s R ω
17 4 5 cutpos φ A = 0 s x L A | 0 s < s x | s R A
18 7 a1i φ Y = L ω | s R ω
19 15 16 17 18 mulsunif φ A s Y = b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d | s b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d
20 0sno 0 s No
21 20 elexi 0 s V
22 21 snid 0 s 0 s
23 elun1 0 s 0 s 0 s 0 s x L A | 0 s < s x
24 22 23 ax-mp 0 s 0 s x L A | 0 s < s x
25 peano1 ω
26 1 2 3 precsexlem1 L = 0 s
27 22 26 eleqtrri 0 s L
28 fveq2 b = L b = L
29 28 eleq2d b = 0 s L b 0 s L
30 29 rspcev ω 0 s L b ω 0 s L b
31 25 27 30 mp2an b ω 0 s L b
32 eliun 0 s b ω L b b ω 0 s L b
33 31 32 mpbir 0 s b ω L b
34 fo1st 1 st : V onto V
35 fofun 1 st : V onto V Fun 1 st
36 34 35 ax-mp Fun 1 st
37 rdgfun Could not format Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) : No typesetting found for |- Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
38 1 funeqi Could not format ( Fun F <-> Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ) : No typesetting found for |- ( Fun F <-> Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ) with typecode |-
39 37 38 mpbir Fun F
40 funco Fun 1 st Fun F Fun 1 st F
41 36 39 40 mp2an Fun 1 st F
42 2 funeqi Fun L Fun 1 st F
43 41 42 mpbir Fun L
44 funiunfv Fun L b ω L b = L ω
45 43 44 ax-mp b ω L b = L ω
46 33 45 eleqtri 0 s L ω
47 addsrid 0 s No 0 s + s 0 s = 0 s
48 20 47 ax-mp 0 s + s 0 s = 0 s
49 muls01 0 s No 0 s s 0 s = 0 s
50 20 49 ax-mp 0 s s 0 s = 0 s
51 48 50 oveq12i 0 s + s 0 s - s 0 s s 0 s = 0 s - s 0 s
52 subsid 0 s No 0 s - s 0 s = 0 s
53 20 52 ax-mp 0 s - s 0 s = 0 s
54 51 53 eqtr2i 0 s = 0 s + s 0 s - s 0 s s 0 s
55 16 scutcld φ L ω | s R ω No
56 7 55 eqeltrid φ Y No
57 muls02 Y No 0 s s Y = 0 s
58 56 57 syl φ 0 s s Y = 0 s
59 muls01 A No A s 0 s = 0 s
60 4 59 syl φ A s 0 s = 0 s
61 58 60 oveq12d φ 0 s s Y + s A s 0 s = 0 s + s 0 s
62 61 oveq1d φ 0 s s Y + s A s 0 s - s 0 s s 0 s = 0 s + s 0 s - s 0 s s 0 s
63 54 62 eqtr4id φ 0 s = 0 s s Y + s A s 0 s - s 0 s s 0 s
64 oveq1 c = 0 s c s Y = 0 s s Y
65 64 oveq1d c = 0 s c s Y + s A s d = 0 s s Y + s A s d
66 oveq1 c = 0 s c s d = 0 s s d
67 65 66 oveq12d c = 0 s c s Y + s A s d - s c s d = 0 s s Y + s A s d - s 0 s s d
68 67 eqeq2d c = 0 s 0 s = c s Y + s A s d - s c s d 0 s = 0 s s Y + s A s d - s 0 s s d
69 oveq2 d = 0 s A s d = A s 0 s
70 69 oveq2d d = 0 s 0 s s Y + s A s d = 0 s s Y + s A s 0 s
71 oveq2 d = 0 s 0 s s d = 0 s s 0 s
72 70 71 oveq12d d = 0 s 0 s s Y + s A s d - s 0 s s d = 0 s s Y + s A s 0 s - s 0 s s 0 s
73 72 eqeq2d d = 0 s 0 s = 0 s s Y + s A s d - s 0 s s d 0 s = 0 s s Y + s A s 0 s - s 0 s s 0 s
74 68 73 rspc2ev 0 s 0 s x L A | 0 s < s x 0 s L ω 0 s = 0 s s Y + s A s 0 s - s 0 s s 0 s c 0 s x L A | 0 s < s x d L ω 0 s = c s Y + s A s d - s c s d
75 24 46 63 74 mp3an12i φ c 0 s x L A | 0 s < s x d L ω 0 s = c s Y + s A s d - s c s d
76 eqeq1 b = 0 s b = c s Y + s A s d - s c s d 0 s = c s Y + s A s d - s c s d
77 76 2rexbidv b = 0 s c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d c 0 s x L A | 0 s < s x d L ω 0 s = c s Y + s A s d - s c s d
78 21 77 elab 0 s b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d c 0 s x L A | 0 s < s x d L ω 0 s = c s Y + s A s d - s c s d
79 75 78 sylibr φ 0 s b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d
80 elun1 0 s b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d 0 s b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d
81 79 80 syl φ 0 s b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d
82 eqid c 0 s x L A | 0 s < s x , d L ω c s Y + s A s d - s c s d = c 0 s x L A | 0 s < s x , d L ω c s Y + s A s d - s c s d
83 82 rnmpo ran c 0 s x L A | 0 s < s x , d L ω c s Y + s A s d - s c s d = b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d
84 ssltex1 0 s x L A | 0 s < s x s R A 0 s x L A | 0 s < s x V
85 15 84 syl φ 0 s x L A | 0 s < s x V
86 ssltex1 L ω s R ω L ω V
87 16 86 syl φ L ω V
88 mpoexga 0 s x L A | 0 s < s x V L ω V c 0 s x L A | 0 s < s x , d L ω c s Y + s A s d - s c s d V
89 85 87 88 syl2anc φ c 0 s x L A | 0 s < s x , d L ω c s Y + s A s d - s c s d V
90 rnexg c 0 s x L A | 0 s < s x , d L ω c s Y + s A s d - s c s d V ran c 0 s x L A | 0 s < s x , d L ω c s Y + s A s d - s c s d V
91 89 90 syl φ ran c 0 s x L A | 0 s < s x , d L ω c s Y + s A s d - s c s d V
92 83 91 eqeltrrid φ b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d V
93 eqid c R A , d R ω c s Y + s A s d - s c s d = c R A , d R ω c s Y + s A s d - s c s d
94 93 rnmpo ran c R A , d R ω c s Y + s A s d - s c s d = b | c R A d R ω b = c s Y + s A s d - s c s d
95 fvex R A V
96 ssltex2 L ω s R ω R ω V
97 16 96 syl φ R ω V
98 mpoexga R A V R ω V c R A , d R ω c s Y + s A s d - s c s d V
99 95 97 98 sylancr φ c R A , d R ω c s Y + s A s d - s c s d V
100 rnexg c R A , d R ω c s Y + s A s d - s c s d V ran c R A , d R ω c s Y + s A s d - s c s d V
101 99 100 syl φ ran c R A , d R ω c s Y + s A s d - s c s d V
102 94 101 eqeltrrid φ b | c R A d R ω b = c s Y + s A s d - s c s d V
103 92 102 unexd φ b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d V
104 snex 1 s V
105 104 a1i φ 1 s V
106 ssltss1 0 s x L A | 0 s < s x s R A 0 s x L A | 0 s < s x No
107 15 106 syl φ 0 s x L A | 0 s < s x No
108 107 sselda φ c 0 s x L A | 0 s < s x c No
109 108 adantrr φ c 0 s x L A | 0 s < s x d L ω c No
110 56 adantr φ c 0 s x L A | 0 s < s x d L ω Y No
111 109 110 mulscld φ c 0 s x L A | 0 s < s x d L ω c s Y No
112 4 adantr φ c 0 s x L A | 0 s < s x d L ω A No
113 ssltss1 L ω s R ω L ω No
114 16 113 syl φ L ω No
115 114 sselda φ d L ω d No
116 115 adantrl φ c 0 s x L A | 0 s < s x d L ω d No
117 112 116 mulscld φ c 0 s x L A | 0 s < s x d L ω A s d No
118 111 117 addscld φ c 0 s x L A | 0 s < s x d L ω c s Y + s A s d No
119 109 116 mulscld φ c 0 s x L A | 0 s < s x d L ω c s d No
120 118 119 subscld φ c 0 s x L A | 0 s < s x d L ω c s Y + s A s d - s c s d No
121 eleq1 b = c s Y + s A s d - s c s d b No c s Y + s A s d - s c s d No
122 120 121 syl5ibrcom φ c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b No
123 122 rexlimdvva φ c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b No
124 123 abssdv φ b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d No
125 rightssno R A No
126 125 a1i φ R A No
127 126 sselda φ c R A c No
128 127 adantrr φ c R A d R ω c No
129 56 adantr φ c R A d R ω Y No
130 128 129 mulscld φ c R A d R ω c s Y No
131 4 adantr φ c R A d R ω A No
132 ssltss2 L ω s R ω R ω No
133 16 132 syl φ R ω No
134 133 sselda φ d R ω d No
135 134 adantrl φ c R A d R ω d No
136 131 135 mulscld φ c R A d R ω A s d No
137 130 136 addscld φ c R A d R ω c s Y + s A s d No
138 128 135 mulscld φ c R A d R ω c s d No
139 137 138 subscld φ c R A d R ω c s Y + s A s d - s c s d No
140 139 121 syl5ibrcom φ c R A d R ω b = c s Y + s A s d - s c s d b No
141 140 rexlimdvva φ c R A d R ω b = c s Y + s A s d - s c s d b No
142 141 abssdv φ b | c R A d R ω b = c s Y + s A s d - s c s d No
143 124 142 unssd φ b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d No
144 1sno 1 s No
145 snssi 1 s No 1 s No
146 144 145 mp1i φ 1 s No
147 elun e b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d e b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d e b | c R A d R ω b = c s Y + s A s d - s c s d
148 vex e V
149 eqeq1 b = e b = c s Y + s A s d - s c s d e = c s Y + s A s d - s c s d
150 149 2rexbidv b = e c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d c 0 s x L A | 0 s < s x d L ω e = c s Y + s A s d - s c s d
151 148 150 elab e b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d c 0 s x L A | 0 s < s x d L ω e = c s Y + s A s d - s c s d
152 149 2rexbidv b = e c R A d R ω b = c s Y + s A s d - s c s d c R A d R ω e = c s Y + s A s d - s c s d
153 148 152 elab e b | c R A d R ω b = c s Y + s A s d - s c s d c R A d R ω e = c s Y + s A s d - s c s d
154 151 153 orbi12i e b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d e b | c R A d R ω b = c s Y + s A s d - s c s d c 0 s x L A | 0 s < s x d L ω e = c s Y + s A s d - s c s d c R A d R ω e = c s Y + s A s d - s c s d
155 147 154 bitri e b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d c 0 s x L A | 0 s < s x d L ω e = c s Y + s A s d - s c s d c R A d R ω e = c s Y + s A s d - s c s d
156 elun c 0 s x L A | 0 s < s x c 0 s c x L A | 0 s < s x
157 velsn c 0 s c = 0 s
158 157 orbi1i c 0 s c x L A | 0 s < s x c = 0 s c x L A | 0 s < s x
159 156 158 bitri c 0 s x L A | 0 s < s x c = 0 s c x L A | 0 s < s x
160 58 adantr φ d L ω 0 s s Y = 0 s
161 160 oveq1d φ d L ω 0 s s Y + s A s d = 0 s + s A s d
162 muls02 d No 0 s s d = 0 s
163 115 162 syl φ d L ω 0 s s d = 0 s
164 161 163 oveq12d φ d L ω 0 s s Y + s A s d - s 0 s s d = 0 s + s A s d - s 0 s
165 4 adantr φ d L ω A No
166 165 115 mulscld φ d L ω A s d No
167 addslid A s d No 0 s + s A s d = A s d
168 166 167 syl φ d L ω 0 s + s A s d = A s d
169 168 oveq1d φ d L ω 0 s + s A s d - s 0 s = A s d - s 0 s
170 subsid1 A s d No A s d - s 0 s = A s d
171 166 170 syl φ d L ω A s d - s 0 s = A s d
172 164 169 171 3eqtrd φ d L ω 0 s s Y + s A s d - s 0 s s d = A s d
173 eliun d i ω L i i ω d L i
174 funiunfv Fun L i ω L i = L ω
175 43 174 ax-mp i ω L i = L ω
176 175 eleq2i d i ω L i d L ω
177 173 176 bitr3i i ω d L i d L ω
178 1 2 3 4 5 6 precsexlem9 φ i ω d L i A s d < s 1 s c R i 1 s < s A s c
179 178 simpld φ i ω d L i A s d < s 1 s
180 rsp d L i A s d < s 1 s d L i A s d < s 1 s
181 179 180 syl φ i ω d L i A s d < s 1 s
182 181 rexlimdva φ i ω d L i A s d < s 1 s
183 177 182 biimtrrid φ d L ω A s d < s 1 s
184 183 imp φ d L ω A s d < s 1 s
185 172 184 eqbrtrd φ d L ω 0 s s Y + s A s d - s 0 s s d < s 1 s
186 185 ex φ d L ω 0 s s Y + s A s d - s 0 s s d < s 1 s
187 67 breq1d c = 0 s c s Y + s A s d - s c s d < s 1 s 0 s s Y + s A s d - s 0 s s d < s 1 s
188 187 imbi2d c = 0 s d L ω c s Y + s A s d - s c s d < s 1 s d L ω 0 s s Y + s A s d - s 0 s s d < s 1 s
189 186 188 syl5ibrcom φ c = 0 s d L ω c s Y + s A s d - s c s d < s 1 s
190 scutcut L ω s R ω L ω | s R ω No L ω s L ω | s R ω L ω | s R ω s R ω
191 16 190 syl φ L ω | s R ω No L ω s L ω | s R ω L ω | s R ω s R ω
192 191 simp3d φ L ω | s R ω s R ω
193 192 adantr φ c x L A | 0 s < s x d L ω L ω | s R ω s R ω
194 ovex L ω | s R ω V
195 194 snid L ω | s R ω L ω | s R ω
196 7 195 eqeltri Y L ω | s R ω
197 196 a1i φ c x L A | 0 s < s x d L ω Y L ω | s R ω
198 peano2 i ω suc i ω
199 198 ad2antrl φ c x L A | 0 s < s x i ω d L i suc i ω
200 eqid 1 s + s c - s A s d / su c = 1 s + s c - s A s d / su c
201 oveq1 Could not format ( xL = c -> ( xL -s A ) = ( c -s A ) ) : No typesetting found for |- ( xL = c -> ( xL -s A ) = ( c -s A ) ) with typecode |-
202 201 oveq1d Could not format ( xL = c -> ( ( xL -s A ) x.s yL ) = ( ( c -s A ) x.s yL ) ) : No typesetting found for |- ( xL = c -> ( ( xL -s A ) x.s yL ) = ( ( c -s A ) x.s yL ) ) with typecode |-
203 202 oveq2d Could not format ( xL = c -> ( 1s +s ( ( xL -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s yL ) ) ) : No typesetting found for |- ( xL = c -> ( 1s +s ( ( xL -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s yL ) ) ) with typecode |-
204 id Could not format ( xL = c -> xL = c ) : No typesetting found for |- ( xL = c -> xL = c ) with typecode |-
205 203 204 oveq12d Could not format ( xL = c -> ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) : No typesetting found for |- ( xL = c -> ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) with typecode |-
206 205 eqeq2d Could not format ( xL = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) ) : No typesetting found for |- ( xL = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) ) with typecode |-
207 oveq2 Could not format ( yL = d -> ( ( c -s A ) x.s yL ) = ( ( c -s A ) x.s d ) ) : No typesetting found for |- ( yL = d -> ( ( c -s A ) x.s yL ) = ( ( c -s A ) x.s d ) ) with typecode |-
208 207 oveq2d Could not format ( yL = d -> ( 1s +s ( ( c -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) : No typesetting found for |- ( yL = d -> ( 1s +s ( ( c -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) with typecode |-
209 208 oveq1d Could not format ( yL = d -> ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) : No typesetting found for |- ( yL = d -> ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) with typecode |-
210 209 eqeq2d Could not format ( yL = d -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) ) : No typesetting found for |- ( yL = d -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) ) with typecode |-
211 206 210 rspc2ev Could not format ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s
212 200 211 mp3an3 Could not format ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s
213 212 ad2ant2l Could not format ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s
214 ovex 1 s + s c - s A s d / su c V
215 eqeq1 Could not format ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) : No typesetting found for |- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yL ) ) /su xL ) ) ) with typecode |-
216 215 2rexbidv Could not format ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s
217 214 216 elab Could not format ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s
218 213 217 sylibr Could not format ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s
219 elun1 Could not format ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
220 elun2 Could not format ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
221 218 219 220 3syl Could not format ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
222 1 2 3 precsexlem5 Could not format ( i e. _om -> ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
223 222 ad2antrl Could not format ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
224 221 223 eleqtrrd φ c x L A | 0 s < s x i ω d L i 1 s + s c - s A s d / su c R suc i
225 fveq2 j = suc i R j = R suc i
226 225 eleq2d j = suc i 1 s + s c - s A s d / su c R j 1 s + s c - s A s d / su c R suc i
227 226 rspcev suc i ω 1 s + s c - s A s d / su c R suc i j ω 1 s + s c - s A s d / su c R j
228 199 224 227 syl2anc φ c x L A | 0 s < s x i ω d L i j ω 1 s + s c - s A s d / su c R j
229 228 rexlimdvaa φ c x L A | 0 s < s x i ω d L i j ω 1 s + s c - s A s d / su c R j
230 eliun 1 s + s c - s A s d / su c j ω R j j ω 1 s + s c - s A s d / su c R j
231 fo2nd 2 nd : V onto V
232 fofun 2 nd : V onto V Fun 2 nd
233 231 232 ax-mp Fun 2 nd
234 funco Fun 2 nd Fun F Fun 2 nd F
235 233 39 234 mp2an Fun 2 nd F
236 3 funeqi Fun R Fun 2 nd F
237 235 236 mpbir Fun R
238 funiunfv Fun R j ω R j = R ω
239 237 238 ax-mp j ω R j = R ω
240 239 eleq2i 1 s + s c - s A s d / su c j ω R j 1 s + s c - s A s d / su c R ω
241 230 240 bitr3i j ω 1 s + s c - s A s d / su c R j 1 s + s c - s A s d / su c R ω
242 229 177 241 3imtr3g φ c x L A | 0 s < s x d L ω 1 s + s c - s A s d / su c R ω
243 242 impr φ c x L A | 0 s < s x d L ω 1 s + s c - s A s d / su c R ω
244 193 197 243 ssltsepcd φ c x L A | 0 s < s x d L ω Y < s 1 s + s c - s A s d / su c
245 56 adantr φ c x L A | 0 s < s x d L ω Y No
246 144 a1i φ c x L A | 0 s < s x d L ω 1 s No
247 leftssno L A No
248 11 247 sstri x L A | 0 s < s x No
249 248 sseli c x L A | 0 s < s x c No
250 249 adantl φ c x L A | 0 s < s x c No
251 4 adantr φ c x L A | 0 s < s x A No
252 250 251 subscld φ c x L A | 0 s < s x c - s A No
253 252 adantrr φ c x L A | 0 s < s x d L ω c - s A No
254 115 adantrl φ c x L A | 0 s < s x d L ω d No
255 253 254 mulscld φ c x L A | 0 s < s x d L ω c - s A s d No
256 246 255 addscld φ c x L A | 0 s < s x d L ω 1 s + s c - s A s d No
257 249 ad2antrl φ c x L A | 0 s < s x d L ω c No
258 breq2 x = c 0 s < s x 0 s < s c
259 258 elrab c x L A | 0 s < s x c L A 0 s < s c
260 259 simprbi c x L A | 0 s < s x 0 s < s c
261 260 ad2antrl φ c x L A | 0 s < s x d L ω 0 s < s c
262 260 adantl φ c x L A | 0 s < s x 0 s < s c
263 breq2 Could not format ( xO = c -> ( 0s 0s ( 0s 0s
264 oveq1 Could not format ( xO = c -> ( xO x.s y ) = ( c x.s y ) ) : No typesetting found for |- ( xO = c -> ( xO x.s y ) = ( c x.s y ) ) with typecode |-
265 264 eqeq1d Could not format ( xO = c -> ( ( xO x.s y ) = 1s <-> ( c x.s y ) = 1s ) ) : No typesetting found for |- ( xO = c -> ( ( xO x.s y ) = 1s <-> ( c x.s y ) = 1s ) ) with typecode |-
266 265 rexbidv Could not format ( xO = c -> ( E. y e. No ( xO x.s y ) = 1s <-> E. y e. No ( c x.s y ) = 1s ) ) : No typesetting found for |- ( xO = c -> ( E. y e. No ( xO x.s y ) = 1s <-> E. y e. No ( c x.s y ) = 1s ) ) with typecode |-
267 263 266 imbi12d Could not format ( xO = c -> ( ( 0s E. y e. No ( xO x.s y ) = 1s ) <-> ( 0s E. y e. No ( c x.s y ) = 1s ) ) ) : No typesetting found for |- ( xO = c -> ( ( 0s E. y e. No ( xO x.s y ) = 1s ) <-> ( 0s E. y e. No ( c x.s y ) = 1s ) ) ) with typecode |-
268 6 adantr Could not format ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) : No typesetting found for |- ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) with typecode |-
269 ssun1 L A L A R A
270 11 269 sstri x L A | 0 s < s x L A R A
271 270 sseli c x L A | 0 s < s x c L A R A
272 271 adantl φ c x L A | 0 s < s x c L A R A
273 267 268 272 rspcdva φ c x L A | 0 s < s x 0 s < s c y No c s y = 1 s
274 262 273 mpd φ c x L A | 0 s < s x y No c s y = 1 s
275 274 adantrr φ c x L A | 0 s < s x d L ω y No c s y = 1 s
276 245 256 257 261 275 sltmuldiv2wd φ c x L A | 0 s < s x d L ω c s Y < s 1 s + s c - s A s d Y < s 1 s + s c - s A s d / su c
277 244 276 mpbird φ c x L A | 0 s < s x d L ω c s Y < s 1 s + s c - s A s d
278 257 254 mulscld φ c x L A | 0 s < s x d L ω c s d No
279 166 adantrl φ c x L A | 0 s < s x d L ω A s d No
280 246 278 279 addsubsassd φ c x L A | 0 s < s x d L ω 1 s + s c s d - s A s d = 1 s + s c s d - s A s d
281 4 adantr φ c x L A | 0 s < s x d L ω A No
282 257 281 254 subsdird φ c x L A | 0 s < s x d L ω c - s A s d = c s d - s A s d
283 282 oveq2d φ c x L A | 0 s < s x d L ω 1 s + s c - s A s d = 1 s + s c s d - s A s d
284 280 283 eqtr4d φ c x L A | 0 s < s x d L ω 1 s + s c s d - s A s d = 1 s + s c - s A s d
285 277 284 breqtrrd φ c x L A | 0 s < s x d L ω c s Y < s 1 s + s c s d - s A s d
286 56 adantr φ c x L A | 0 s < s x Y No
287 250 286 mulscld φ c x L A | 0 s < s x c s Y No
288 287 adantrr φ c x L A | 0 s < s x d L ω c s Y No
289 288 279 addscld φ c x L A | 0 s < s x d L ω c s Y + s A s d No
290 289 278 246 sltsubaddd φ c x L A | 0 s < s x d L ω c s Y + s A s d - s c s d < s 1 s c s Y + s A s d < s 1 s + s c s d
291 246 278 addscld φ c x L A | 0 s < s x d L ω 1 s + s c s d No
292 288 279 291 sltaddsubd φ c x L A | 0 s < s x d L ω c s Y + s A s d < s 1 s + s c s d c s Y < s 1 s + s c s d - s A s d
293 290 292 bitrd φ c x L A | 0 s < s x d L ω c s Y + s A s d - s c s d < s 1 s c s Y < s 1 s + s c s d - s A s d
294 285 293 mpbird φ c x L A | 0 s < s x d L ω c s Y + s A s d - s c s d < s 1 s
295 294 exp32 φ c x L A | 0 s < s x d L ω c s Y + s A s d - s c s d < s 1 s
296 189 295 jaod φ c = 0 s c x L A | 0 s < s x d L ω c s Y + s A s d - s c s d < s 1 s
297 159 296 biimtrid φ c 0 s x L A | 0 s < s x d L ω c s Y + s A s d - s c s d < s 1 s
298 297 imp32 φ c 0 s x L A | 0 s < s x d L ω c s Y + s A s d - s c s d < s 1 s
299 breq1 e = c s Y + s A s d - s c s d e < s 1 s c s Y + s A s d - s c s d < s 1 s
300 298 299 syl5ibrcom φ c 0 s x L A | 0 s < s x d L ω e = c s Y + s A s d - s c s d e < s 1 s
301 300 rexlimdvva φ c 0 s x L A | 0 s < s x d L ω e = c s Y + s A s d - s c s d e < s 1 s
302 192 adantr φ c R A d R ω L ω | s R ω s R ω
303 196 a1i φ c R A d R ω Y L ω | s R ω
304 198 ad2antrl φ c R A i ω d R i suc i ω
305 oveq1 Could not format ( xR = c -> ( xR -s A ) = ( c -s A ) ) : No typesetting found for |- ( xR = c -> ( xR -s A ) = ( c -s A ) ) with typecode |-
306 305 oveq1d Could not format ( xR = c -> ( ( xR -s A ) x.s yR ) = ( ( c -s A ) x.s yR ) ) : No typesetting found for |- ( xR = c -> ( ( xR -s A ) x.s yR ) = ( ( c -s A ) x.s yR ) ) with typecode |-
307 306 oveq2d Could not format ( xR = c -> ( 1s +s ( ( xR -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s yR ) ) ) : No typesetting found for |- ( xR = c -> ( 1s +s ( ( xR -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s yR ) ) ) with typecode |-
308 id Could not format ( xR = c -> xR = c ) : No typesetting found for |- ( xR = c -> xR = c ) with typecode |-
309 307 308 oveq12d Could not format ( xR = c -> ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) : No typesetting found for |- ( xR = c -> ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) with typecode |-
310 309 eqeq2d Could not format ( xR = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) ) : No typesetting found for |- ( xR = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) ) with typecode |-
311 oveq2 Could not format ( yR = d -> ( ( c -s A ) x.s yR ) = ( ( c -s A ) x.s d ) ) : No typesetting found for |- ( yR = d -> ( ( c -s A ) x.s yR ) = ( ( c -s A ) x.s d ) ) with typecode |-
312 311 oveq2d Could not format ( yR = d -> ( 1s +s ( ( c -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) : No typesetting found for |- ( yR = d -> ( 1s +s ( ( c -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s d ) ) ) with typecode |-
313 312 oveq1d Could not format ( yR = d -> ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) : No typesetting found for |- ( yR = d -> ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) with typecode |-
314 313 eqeq2d Could not format ( yR = d -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) ) : No typesetting found for |- ( yR = d -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) ) with typecode |-
315 310 314 rspc2ev Could not format ( ( c e. ( _Right ` A ) /\ d e. ( R ` i ) /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) : No typesetting found for |- ( ( c e. ( _Right ` A ) /\ d e. ( R ` i ) /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) with typecode |-
316 200 315 mp3an3 Could not format ( ( c e. ( _Right ` A ) /\ d e. ( R ` i ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) : No typesetting found for |- ( ( c e. ( _Right ` A ) /\ d e. ( R ` i ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) with typecode |-
317 316 ad2ant2l Could not format ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) : No typesetting found for |- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) with typecode |-
318 eqeq1 Could not format ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) : No typesetting found for |- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) with typecode |-
319 318 2rexbidv Could not format ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) : No typesetting found for |- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) ) with typecode |-
320 214 319 elab Could not format ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) : No typesetting found for |- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) ) with typecode |-
321 317 320 sylibr Could not format ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } ) : No typesetting found for |- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } ) with typecode |-
322 elun2 Could not format ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
323 321 322 220 3syl Could not format ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
324 222 ad2antrl Could not format ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( R ` i ) ) ) -> ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s ( R ` suc i ) = ( ( R ` i ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
325 323 324 eleqtrrd φ c R A i ω d R i 1 s + s c - s A s d / su c R suc i
326 304 325 227 syl2anc φ c R A i ω d R i j ω 1 s + s c - s A s d / su c R j
327 326 rexlimdvaa φ c R A i ω d R i j ω 1 s + s c - s A s d / su c R j
328 eliun d i ω R i i ω d R i
329 funiunfv Fun R i ω R i = R ω
330 237 329 ax-mp i ω R i = R ω
331 330 eleq2i d i ω R i d R ω
332 328 331 bitr3i i ω d R i d R ω
333 327 332 241 3imtr3g φ c R A d R ω 1 s + s c - s A s d / su c R ω
334 333 impr φ c R A d R ω 1 s + s c - s A s d / su c R ω
335 302 303 334 ssltsepcd φ c R A d R ω Y < s 1 s + s c - s A s d / su c
336 144 a1i φ c R A d R ω 1 s No
337 4 adantr φ c R A A No
338 127 337 subscld φ c R A c - s A No
339 338 adantrr φ c R A d R ω c - s A No
340 339 135 mulscld φ c R A d R ω c - s A s d No
341 336 340 addscld φ c R A d R ω 1 s + s c - s A s d No
342 20 a1i φ c R A 0 s No
343 5 adantr φ c R A 0 s < s A
344 breq2 Could not format ( xO = c -> ( A A ( A A
345 rightval Could not format ( _Right ` A ) = { xO e. ( _Old ` ( bday ` A ) ) | A
346 344 345 elrab2 c R A c Old bday A A < s c
347 346 simprbi c R A A < s c
348 347 adantl φ c R A A < s c
349 342 337 127 343 348 slttrd φ c R A 0 s < s c
350 349 adantrr φ c R A d R ω 0 s < s c
351 6 adantr Could not format ( ( ph /\ c e. ( _Right ` A ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) : No typesetting found for |- ( ( ph /\ c e. ( _Right ` A ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) with typecode |-
352 elun2 c R A c L A R A
353 352 adantl φ c R A c L A R A
354 267 351 353 rspcdva φ c R A 0 s < s c y No c s y = 1 s
355 349 354 mpd φ c R A y No c s y = 1 s
356 355 adantrr φ c R A d R ω y No c s y = 1 s
357 129 341 128 350 356 sltmuldiv2wd φ c R A d R ω c s Y < s 1 s + s c - s A s d Y < s 1 s + s c - s A s d / su c
358 335 357 mpbird φ c R A d R ω c s Y < s 1 s + s c - s A s d
359 336 138 136 addsubsassd φ c R A d R ω 1 s + s c s d - s A s d = 1 s + s c s d - s A s d
360 128 131 135 subsdird φ c R A d R ω c - s A s d = c s d - s A s d
361 360 oveq2d φ c R A d R ω 1 s + s c - s A s d = 1 s + s c s d - s A s d
362 359 361 eqtr4d φ c R A d R ω 1 s + s c s d - s A s d = 1 s + s c - s A s d
363 358 362 breqtrrd φ c R A d R ω c s Y < s 1 s + s c s d - s A s d
364 137 138 336 sltsubaddd φ c R A d R ω c s Y + s A s d - s c s d < s 1 s c s Y + s A s d < s 1 s + s c s d
365 336 138 addscld φ c R A d R ω 1 s + s c s d No
366 130 136 365 sltaddsubd φ c R A d R ω c s Y + s A s d < s 1 s + s c s d c s Y < s 1 s + s c s d - s A s d
367 364 366 bitrd φ c R A d R ω c s Y + s A s d - s c s d < s 1 s c s Y < s 1 s + s c s d - s A s d
368 363 367 mpbird φ c R A d R ω c s Y + s A s d - s c s d < s 1 s
369 368 299 syl5ibrcom φ c R A d R ω e = c s Y + s A s d - s c s d e < s 1 s
370 369 rexlimdvva φ c R A d R ω e = c s Y + s A s d - s c s d e < s 1 s
371 301 370 jaod φ c 0 s x L A | 0 s < s x d L ω e = c s Y + s A s d - s c s d c R A d R ω e = c s Y + s A s d - s c s d e < s 1 s
372 155 371 biimtrid φ e b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d e < s 1 s
373 372 imp φ e b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d e < s 1 s
374 velsn f 1 s f = 1 s
375 breq2 f = 1 s e < s f e < s 1 s
376 374 375 sylbi f 1 s e < s f e < s 1 s
377 373 376 syl5ibrcom φ e b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d f 1 s e < s f
378 377 3impia φ e b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d f 1 s e < s f
379 103 105 143 146 378 ssltd φ b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d s 1 s
380 eqid c 0 s x L A | 0 s < s x , d R ω c s Y + s A s d - s c s d = c 0 s x L A | 0 s < s x , d R ω c s Y + s A s d - s c s d
381 380 rnmpo ran c 0 s x L A | 0 s < s x , d R ω c s Y + s A s d - s c s d = b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d
382 mpoexga 0 s x L A | 0 s < s x V R ω V c 0 s x L A | 0 s < s x , d R ω c s Y + s A s d - s c s d V
383 85 97 382 syl2anc φ c 0 s x L A | 0 s < s x , d R ω c s Y + s A s d - s c s d V
384 rnexg c 0 s x L A | 0 s < s x , d R ω c s Y + s A s d - s c s d V ran c 0 s x L A | 0 s < s x , d R ω c s Y + s A s d - s c s d V
385 383 384 syl φ ran c 0 s x L A | 0 s < s x , d R ω c s Y + s A s d - s c s d V
386 381 385 eqeltrrid φ b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d V
387 eqid c R A , d L ω c s Y + s A s d - s c s d = c R A , d L ω c s Y + s A s d - s c s d
388 387 rnmpo ran c R A , d L ω c s Y + s A s d - s c s d = b | c R A d L ω b = c s Y + s A s d - s c s d
389 mpoexga R A V L ω V c R A , d L ω c s Y + s A s d - s c s d V
390 95 87 389 sylancr φ c R A , d L ω c s Y + s A s d - s c s d V
391 rnexg c R A , d L ω c s Y + s A s d - s c s d V ran c R A , d L ω c s Y + s A s d - s c s d V
392 390 391 syl φ ran c R A , d L ω c s Y + s A s d - s c s d V
393 388 392 eqeltrrid φ b | c R A d L ω b = c s Y + s A s d - s c s d V
394 386 393 unexd φ b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d V
395 108 adantrr φ c 0 s x L A | 0 s < s x d R ω c No
396 56 adantr φ c 0 s x L A | 0 s < s x d R ω Y No
397 395 396 mulscld φ c 0 s x L A | 0 s < s x d R ω c s Y No
398 4 adantr φ c 0 s x L A | 0 s < s x d R ω A No
399 134 adantrl φ c 0 s x L A | 0 s < s x d R ω d No
400 398 399 mulscld φ c 0 s x L A | 0 s < s x d R ω A s d No
401 397 400 addscld φ c 0 s x L A | 0 s < s x d R ω c s Y + s A s d No
402 395 399 mulscld φ c 0 s x L A | 0 s < s x d R ω c s d No
403 401 402 subscld φ c 0 s x L A | 0 s < s x d R ω c s Y + s A s d - s c s d No
404 403 121 syl5ibrcom φ c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b No
405 404 rexlimdvva φ c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b No
406 405 abssdv φ b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d No
407 127 adantrr φ c R A d L ω c No
408 56 adantr φ c R A d L ω Y No
409 407 408 mulscld φ c R A d L ω c s Y No
410 4 adantr φ c R A d L ω A No
411 115 adantrl φ c R A d L ω d No
412 410 411 mulscld φ c R A d L ω A s d No
413 409 412 addscld φ c R A d L ω c s Y + s A s d No
414 407 411 mulscld φ c R A d L ω c s d No
415 413 414 subscld φ c R A d L ω c s Y + s A s d - s c s d No
416 415 121 syl5ibrcom φ c R A d L ω b = c s Y + s A s d - s c s d b No
417 416 rexlimdvva φ c R A d L ω b = c s Y + s A s d - s c s d b No
418 417 abssdv φ b | c R A d L ω b = c s Y + s A s d - s c s d No
419 406 418 unssd φ b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d No
420 elun f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d f b | c R A d L ω b = c s Y + s A s d - s c s d
421 vex f V
422 eqeq1 b = f b = c s Y + s A s d - s c s d f = c s Y + s A s d - s c s d
423 422 2rexbidv b = f c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d c 0 s x L A | 0 s < s x d R ω f = c s Y + s A s d - s c s d
424 421 423 elab f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d c 0 s x L A | 0 s < s x d R ω f = c s Y + s A s d - s c s d
425 422 2rexbidv b = f c R A d L ω b = c s Y + s A s d - s c s d c R A d L ω f = c s Y + s A s d - s c s d
426 421 425 elab f b | c R A d L ω b = c s Y + s A s d - s c s d c R A d L ω f = c s Y + s A s d - s c s d
427 424 426 orbi12i f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d f b | c R A d L ω b = c s Y + s A s d - s c s d c 0 s x L A | 0 s < s x d R ω f = c s Y + s A s d - s c s d c R A d L ω f = c s Y + s A s d - s c s d
428 420 427 bitri f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d c 0 s x L A | 0 s < s x d R ω f = c s Y + s A s d - s c s d c R A d L ω f = c s Y + s A s d - s c s d
429 eliun d j ω R j j ω d R j
430 239 eleq2i d j ω R j d R ω
431 429 430 bitr3i j ω d R j d R ω
432 1 2 3 4 5 6 precsexlem9 φ j ω c L j A s c < s 1 s d R j 1 s < s A s d
433 rsp d R j 1 s < s A s d d R j 1 s < s A s d
434 432 433 simpl2im φ j ω d R j 1 s < s A s d
435 434 rexlimdva φ j ω d R j 1 s < s A s d
436 431 435 biimtrrid φ d R ω 1 s < s A s d
437 436 imp φ d R ω 1 s < s A s d
438 56 adantr φ d R ω Y No
439 57 oveq1d Y No 0 s s Y + s A s d = 0 s + s A s d
440 438 439 syl φ d R ω 0 s s Y + s A s d = 0 s + s A s d
441 4 adantr φ d R ω A No
442 441 134 mulscld φ d R ω A s d No
443 442 167 syl φ d R ω 0 s + s A s d = A s d
444 440 443 eqtrd φ d R ω 0 s s Y + s A s d = A s d
445 134 162 syl φ d R ω 0 s s d = 0 s
446 444 445 oveq12d φ d R ω 0 s s Y + s A s d - s 0 s s d = A s d - s 0 s
447 442 170 syl φ d R ω A s d - s 0 s = A s d
448 446 447 eqtrd φ d R ω 0 s s Y + s A s d - s 0 s s d = A s d
449 437 448 breqtrrd φ d R ω 1 s < s 0 s s Y + s A s d - s 0 s s d
450 449 ex φ d R ω 1 s < s 0 s s Y + s A s d - s 0 s s d
451 67 breq2d c = 0 s 1 s < s c s Y + s A s d - s c s d 1 s < s 0 s s Y + s A s d - s 0 s s d
452 451 imbi2d c = 0 s d R ω 1 s < s c s Y + s A s d - s c s d d R ω 1 s < s 0 s s Y + s A s d - s 0 s s d
453 450 452 syl5ibrcom φ c = 0 s d R ω 1 s < s c s Y + s A s d - s c s d
454 144 a1i φ c x L A | 0 s < s x d R ω 1 s No
455 249 ad2antrl φ c x L A | 0 s < s x d R ω c No
456 134 adantrl φ c x L A | 0 s < s x d R ω d No
457 455 456 mulscld φ c x L A | 0 s < s x d R ω c s d No
458 442 adantrl φ c x L A | 0 s < s x d R ω A s d No
459 454 457 458 addsubsassd φ c x L A | 0 s < s x d R ω 1 s + s c s d - s A s d = 1 s + s c s d - s A s d
460 4 adantr φ c x L A | 0 s < s x d R ω A No
461 455 460 456 subsdird φ c x L A | 0 s < s x d R ω c - s A s d = c s d - s A s d
462 461 oveq2d φ c x L A | 0 s < s x d R ω 1 s + s c - s A s d = 1 s + s c s d - s A s d
463 459 462 eqtr4d φ c x L A | 0 s < s x d R ω 1 s + s c s d - s A s d = 1 s + s c - s A s d
464 191 simp2d φ L ω s L ω | s R ω
465 464 adantr φ c x L A | 0 s < s x d R ω L ω s L ω | s R ω
466 198 ad2antrl φ c x L A | 0 s < s x i ω d R i suc i ω
467 201 oveq1d Could not format ( xL = c -> ( ( xL -s A ) x.s yR ) = ( ( c -s A ) x.s yR ) ) : No typesetting found for |- ( xL = c -> ( ( xL -s A ) x.s yR ) = ( ( c -s A ) x.s yR ) ) with typecode |-
468 467 oveq2d Could not format ( xL = c -> ( 1s +s ( ( xL -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s yR ) ) ) : No typesetting found for |- ( xL = c -> ( 1s +s ( ( xL -s A ) x.s yR ) ) = ( 1s +s ( ( c -s A ) x.s yR ) ) ) with typecode |-
469 468 204 oveq12d Could not format ( xL = c -> ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) : No typesetting found for |- ( xL = c -> ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) with typecode |-
470 469 eqeq2d Could not format ( xL = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) ) : No typesetting found for |- ( xL = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yR ) ) /su c ) ) ) with typecode |-
471 470 314 rspc2ev Could not format ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s
472 200 471 mp3an3 Could not format ( ( c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s
473 472 ad2ant2l Could not format ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s
474 eqeq1 Could not format ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) : No typesetting found for |- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xL -s A ) x.s yR ) ) /su xL ) ) ) with typecode |-
475 474 2rexbidv Could not format ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s ( E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s
476 214 475 elab Could not format ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s E. xL e. { x e. ( _Left ` A ) | 0s
477 473 476 sylibr Could not format ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s
478 elun2 Could not format ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
479 elun2 Could not format ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
480 477 478 479 3syl Could not format ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
481 1 2 3 precsexlem4 Could not format ( i e. _om -> ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
482 481 ad2antrl Could not format ( ( ( ph /\ c e. { x e. ( _Left ` A ) | 0s ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
483 480 482 eleqtrrd φ c x L A | 0 s < s x i ω d R i 1 s + s c - s A s d / su c L suc i
484 fveq2 j = suc i L j = L suc i
485 484 eleq2d j = suc i 1 s + s c - s A s d / su c L j 1 s + s c - s A s d / su c L suc i
486 485 rspcev suc i ω 1 s + s c - s A s d / su c L suc i j ω 1 s + s c - s A s d / su c L j
487 466 483 486 syl2anc φ c x L A | 0 s < s x i ω d R i j ω 1 s + s c - s A s d / su c L j
488 487 rexlimdvaa φ c x L A | 0 s < s x i ω d R i j ω 1 s + s c - s A s d / su c L j
489 eliun 1 s + s c - s A s d / su c j ω L j j ω 1 s + s c - s A s d / su c L j
490 funiunfv Fun L j ω L j = L ω
491 43 490 ax-mp j ω L j = L ω
492 491 eleq2i 1 s + s c - s A s d / su c j ω L j 1 s + s c - s A s d / su c L ω
493 489 492 bitr3i j ω 1 s + s c - s A s d / su c L j 1 s + s c - s A s d / su c L ω
494 488 332 493 3imtr3g φ c x L A | 0 s < s x d R ω 1 s + s c - s A s d / su c L ω
495 494 impr φ c x L A | 0 s < s x d R ω 1 s + s c - s A s d / su c L ω
496 196 a1i φ c x L A | 0 s < s x d R ω Y L ω | s R ω
497 465 495 496 ssltsepcd φ c x L A | 0 s < s x d R ω 1 s + s c - s A s d / su c < s Y
498 252 adantrr φ c x L A | 0 s < s x d R ω c - s A No
499 498 456 mulscld φ c x L A | 0 s < s x d R ω c - s A s d No
500 454 499 addscld φ c x L A | 0 s < s x d R ω 1 s + s c - s A s d No
501 56 adantr φ c x L A | 0 s < s x d R ω Y No
502 260 ad2antrl φ c x L A | 0 s < s x d R ω 0 s < s c
503 274 adantrr φ c x L A | 0 s < s x d R ω y No c s y = 1 s
504 500 501 455 502 503 sltdivmulwd φ c x L A | 0 s < s x d R ω 1 s + s c - s A s d / su c < s Y 1 s + s c - s A s d < s c s Y
505 497 504 mpbid φ c x L A | 0 s < s x d R ω 1 s + s c - s A s d < s c s Y
506 463 505 eqbrtrd φ c x L A | 0 s < s x d R ω 1 s + s c s d - s A s d < s c s Y
507 454 457 addscld φ c x L A | 0 s < s x d R ω 1 s + s c s d No
508 287 adantrr φ c x L A | 0 s < s x d R ω c s Y No
509 507 458 508 sltsubaddd φ c x L A | 0 s < s x d R ω 1 s + s c s d - s A s d < s c s Y 1 s + s c s d < s c s Y + s A s d
510 508 458 addscld φ c x L A | 0 s < s x d R ω c s Y + s A s d No
511 454 457 510 sltaddsubd φ c x L A | 0 s < s x d R ω 1 s + s c s d < s c s Y + s A s d 1 s < s c s Y + s A s d - s c s d
512 509 511 bitrd φ c x L A | 0 s < s x d R ω 1 s + s c s d - s A s d < s c s Y 1 s < s c s Y + s A s d - s c s d
513 506 512 mpbid φ c x L A | 0 s < s x d R ω 1 s < s c s Y + s A s d - s c s d
514 513 exp32 φ c x L A | 0 s < s x d R ω 1 s < s c s Y + s A s d - s c s d
515 453 514 jaod φ c = 0 s c x L A | 0 s < s x d R ω 1 s < s c s Y + s A s d - s c s d
516 159 515 biimtrid φ c 0 s x L A | 0 s < s x d R ω 1 s < s c s Y + s A s d - s c s d
517 516 imp32 φ c 0 s x L A | 0 s < s x d R ω 1 s < s c s Y + s A s d - s c s d
518 breq2 f = c s Y + s A s d - s c s d 1 s < s f 1 s < s c s Y + s A s d - s c s d
519 517 518 syl5ibrcom φ c 0 s x L A | 0 s < s x d R ω f = c s Y + s A s d - s c s d 1 s < s f
520 519 rexlimdvva φ c 0 s x L A | 0 s < s x d R ω f = c s Y + s A s d - s c s d 1 s < s f
521 144 a1i φ c R A d L ω 1 s No
522 521 414 412 addsubsassd φ c R A d L ω 1 s + s c s d - s A s d = 1 s + s c s d - s A s d
523 407 410 411 subsdird φ c R A d L ω c - s A s d = c s d - s A s d
524 523 oveq2d φ c R A d L ω 1 s + s c - s A s d = 1 s + s c s d - s A s d
525 522 524 eqtr4d φ c R A d L ω 1 s + s c s d - s A s d = 1 s + s c - s A s d
526 464 adantr φ c R A d L ω L ω s L ω | s R ω
527 198 ad2antrl φ c R A i ω d L i suc i ω
528 305 oveq1d Could not format ( xR = c -> ( ( xR -s A ) x.s yL ) = ( ( c -s A ) x.s yL ) ) : No typesetting found for |- ( xR = c -> ( ( xR -s A ) x.s yL ) = ( ( c -s A ) x.s yL ) ) with typecode |-
529 528 oveq2d Could not format ( xR = c -> ( 1s +s ( ( xR -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s yL ) ) ) : No typesetting found for |- ( xR = c -> ( 1s +s ( ( xR -s A ) x.s yL ) ) = ( 1s +s ( ( c -s A ) x.s yL ) ) ) with typecode |-
530 529 308 oveq12d Could not format ( xR = c -> ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) : No typesetting found for |- ( xR = c -> ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) with typecode |-
531 530 eqeq2d Could not format ( xR = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) ) : No typesetting found for |- ( xR = c -> ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s yL ) ) /su c ) ) ) with typecode |-
532 531 210 rspc2ev Could not format ( ( c e. ( _Right ` A ) /\ d e. ( L ` i ) /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) : No typesetting found for |- ( ( c e. ( _Right ` A ) /\ d e. ( L ` i ) /\ ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) with typecode |-
533 200 532 mp3an3 Could not format ( ( c e. ( _Right ` A ) /\ d e. ( L ` i ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) : No typesetting found for |- ( ( c e. ( _Right ` A ) /\ d e. ( L ` i ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) with typecode |-
534 533 ad2ant2l Could not format ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) : No typesetting found for |- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) with typecode |-
535 eqeq1 Could not format ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) : No typesetting found for |- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) with typecode |-
536 535 2rexbidv Could not format ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) : No typesetting found for |- ( a = ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) -> ( E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) ) with typecode |-
537 214 536 elab Could not format ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) : No typesetting found for |- ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } <-> E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) ) with typecode |-
538 534 537 sylibr Could not format ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } ) : No typesetting found for |- ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } ) with typecode |-
539 elun1 Could not format ( ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
540 538 539 479 3syl Could not format ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1s +s ( ( c -s A ) x.s d ) ) /su c ) e. ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
541 481 ad2antrl Could not format ( ( ( ph /\ c e. ( _Right ` A ) ) /\ ( i e. _om /\ d e. ( L ` i ) ) ) -> ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( L ` suc i ) = ( ( L ` i ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` i ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
542 540 541 eleqtrrd φ c R A i ω d L i 1 s + s c - s A s d / su c L suc i
543 527 542 486 syl2anc φ c R A i ω d L i j ω 1 s + s c - s A s d / su c L j
544 543 rexlimdvaa φ c R A i ω d L i j ω 1 s + s c - s A s d / su c L j
545 544 177 493 3imtr3g φ c R A d L ω 1 s + s c - s A s d / su c L ω
546 545 impr φ c R A d L ω 1 s + s c - s A s d / su c L ω
547 196 a1i φ c R A d L ω Y L ω | s R ω
548 526 546 547 ssltsepcd φ c R A d L ω 1 s + s c - s A s d / su c < s Y
549 338 adantrr φ c R A d L ω c - s A No
550 549 411 mulscld φ c R A d L ω c - s A s d No
551 521 550 addscld φ c R A d L ω 1 s + s c - s A s d No
552 349 adantrr φ c R A d L ω 0 s < s c
553 355 adantrr φ c R A d L ω y No c s y = 1 s
554 551 408 407 552 553 sltdivmulwd φ c R A d L ω 1 s + s c - s A s d / su c < s Y 1 s + s c - s A s d < s c s Y
555 548 554 mpbid φ c R A d L ω 1 s + s c - s A s d < s c s Y
556 525 555 eqbrtrd φ c R A d L ω 1 s + s c s d - s A s d < s c s Y
557 521 414 addscld φ c R A d L ω 1 s + s c s d No
558 557 412 409 sltsubaddd φ c R A d L ω 1 s + s c s d - s A s d < s c s Y 1 s + s c s d < s c s Y + s A s d
559 521 414 413 sltaddsubd φ c R A d L ω 1 s + s c s d < s c s Y + s A s d 1 s < s c s Y + s A s d - s c s d
560 558 559 bitrd φ c R A d L ω 1 s + s c s d - s A s d < s c s Y 1 s < s c s Y + s A s d - s c s d
561 556 560 mpbid φ c R A d L ω 1 s < s c s Y + s A s d - s c s d
562 561 518 syl5ibrcom φ c R A d L ω f = c s Y + s A s d - s c s d 1 s < s f
563 562 rexlimdvva φ c R A d L ω f = c s Y + s A s d - s c s d 1 s < s f
564 520 563 jaod φ c 0 s x L A | 0 s < s x d R ω f = c s Y + s A s d - s c s d c R A d L ω f = c s Y + s A s d - s c s d 1 s < s f
565 428 564 biimtrid φ f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d 1 s < s f
566 velsn e 1 s e = 1 s
567 breq1 e = 1 s e < s f 1 s < s f
568 567 imbi2d e = 1 s f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d e < s f f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d 1 s < s f
569 566 568 sylbi e 1 s f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d e < s f f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d 1 s < s f
570 565 569 syl5ibrcom φ e 1 s f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d e < s f
571 570 3imp φ e 1 s f b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d e < s f
572 105 394 146 419 571 ssltd φ 1 s s b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d
573 81 379 572 cuteq1 φ b | c 0 s x L A | 0 s < s x d L ω b = c s Y + s A s d - s c s d b | c R A d R ω b = c s Y + s A s d - s c s d | s b | c 0 s x L A | 0 s < s x d R ω b = c s Y + s A s d - s c s d b | c R A d L ω b = c s Y + s A s d - s c s d = 1 s
574 19 573 eqtrd φ A s Y = 1 s