Step |
Hyp |
Ref |
Expression |
1 |
|
precsexlem.1 |
Could not format F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) : No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |- |
2 |
|
precsexlem.2 |
|
3 |
|
precsexlem.3 |
|
4 |
2
|
fveq1i |
|
5 |
|
peano2 |
|
6 |
|
nnon |
|
7 |
|
rdgfnon |
Could not format rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On : No typesetting found for |- rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On with typecode |- |
8 |
1
|
fneq1i |
Could not format ( F Fn On <-> rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On ) : No typesetting found for |- ( F Fn On <-> rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) Fn On ) with typecode |- |
9 |
7 8
|
mpbir |
|
10 |
|
fvco2 |
|
11 |
9 10
|
mpan |
|
12 |
5 6 11
|
3syl |
|
13 |
1 2 3
|
precsexlem3 |
Could not format ( I e. _om -> ( F ` suc I ) = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) : No typesetting found for |- ( I e. _om -> ( F ` suc I ) = <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) with typecode |- |
14 |
13
|
fveq2d |
Could not format ( I e. _om -> ( 1st ` ( F ` suc I ) ) = ( 1st ` <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) ) : No typesetting found for |- ( I e. _om -> ( 1st ` ( F ` suc I ) ) = ( 1st ` <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) ) with typecode |- |
15 |
|
fvex |
|
16 |
|
fvex |
Could not format ( _Right ` A ) e. _V : No typesetting found for |- ( _Right ` A ) e. _V with typecode |- |
17 |
16 15
|
ab2rexex |
Could not format { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } e. _V : No typesetting found for |- { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } e. _V with typecode |- |
18 |
|
fvex |
Could not format ( _Left ` A ) e. _V : No typesetting found for |- ( _Left ` A ) e. _V with typecode |- |
19 |
18
|
rabex |
Could not format { x e. ( _Left ` A ) | 0s
|
20 |
|
fvex |
|
21 |
19 20
|
ab2rexex |
Could not format { a | E. xL e. { x e. ( _Left ` A ) | 0s
|
22 |
17 21
|
unex |
Could not format ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
|
23 |
15 22
|
unex |
Could not format ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
|
24 |
19 15
|
ab2rexex |
Could not format { a | E. xL e. { x e. ( _Left ` A ) | 0s
|
25 |
16 20
|
ab2rexex |
Could not format { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } e. _V : No typesetting found for |- { a | E. xR e. ( _Right ` A ) E. yR e. ( R ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yR ) ) /su xR ) } e. _V with typecode |- |
26 |
24 25
|
unex |
Could not format ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
|
27 |
20 26
|
unex |
Could not format ( ( R ` I ) u. ( { a | E. xL e. { x e. ( _Left ` A ) | 0s
|
28 |
23 27
|
op1st |
Could not format ( 1st ` <. ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) = ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) = ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
|
29 |
14 28
|
eqtrdi |
Could not format ( I e. _om -> ( 1st ` ( F ` suc I ) ) = ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( 1st ` ( F ` suc I ) ) = ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
|
30 |
12 29
|
eqtrd |
Could not format ( I e. _om -> ( ( 1st o. F ) ` suc I ) = ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( ( 1st o. F ) ` suc I ) = ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
|
31 |
4 30
|
eqtrid |
Could not format ( I e. _om -> ( L ` suc I ) = ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( L ` suc I ) = ( ( L ` I ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` I ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
|