Metamath Proof Explorer


Theorem precsexlem6

Description: Lemma for surreal reciprocal. Show that L is non-strictly increasing in its argument. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypotheses precsexlem.1 No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
precsexlem.2 L = 1 st F
precsexlem.3 R = 2 nd F
Assertion precsexlem6 I ω J ω I J L I L J

Proof

Step Hyp Ref Expression
1 precsexlem.1 Could not format F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) : No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
2 precsexlem.2 L = 1 st F
3 precsexlem.3 R = 2 nd F
4 nnawordex I ω J ω I J k ω I + 𝑜 k = J
5 oveq2 k = I + 𝑜 k = I + 𝑜
6 5 fveq2d k = L I + 𝑜 k = L I + 𝑜
7 6 sseq2d k = L I L I + 𝑜 k L I L I + 𝑜
8 oveq2 k = j I + 𝑜 k = I + 𝑜 j
9 8 fveq2d k = j L I + 𝑜 k = L I + 𝑜 j
10 9 sseq2d k = j L I L I + 𝑜 k L I L I + 𝑜 j
11 oveq2 k = suc j I + 𝑜 k = I + 𝑜 suc j
12 11 fveq2d k = suc j L I + 𝑜 k = L I + 𝑜 suc j
13 12 sseq2d k = suc j L I L I + 𝑜 k L I L I + 𝑜 suc j
14 nna0 I ω I + 𝑜 = I
15 14 fveq2d I ω L I + 𝑜 = L I
16 15 eqimsscd I ω L I L I + 𝑜
17 nnacl I ω j ω I + 𝑜 j ω
18 ssun1 Could not format ( L ` ( I +o j ) ) C_ ( ( L ` ( I +o j ) ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` ( I +o j ) ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
19 1 2 3 precsexlem4 Could not format ( ( I +o j ) e. _om -> ( L ` suc ( I +o j ) ) = ( ( L ` ( I +o j ) ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` ( I +o j ) ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s ( L ` suc ( I +o j ) ) = ( ( L ` ( I +o j ) ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( L ` ( I +o j ) ) a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s
20 18 19 sseqtrrid I + 𝑜 j ω L I + 𝑜 j L suc I + 𝑜 j
21 17 20 syl I ω j ω L I + 𝑜 j L suc I + 𝑜 j
22 nnasuc I ω j ω I + 𝑜 suc j = suc I + 𝑜 j
23 22 fveq2d I ω j ω L I + 𝑜 suc j = L suc I + 𝑜 j
24 21 23 sseqtrrd I ω j ω L I + 𝑜 j L I + 𝑜 suc j
25 sstr2 L I L I + 𝑜 j L I + 𝑜 j L I + 𝑜 suc j L I L I + 𝑜 suc j
26 24 25 syl5com I ω j ω L I L I + 𝑜 j L I L I + 𝑜 suc j
27 26 expcom j ω I ω L I L I + 𝑜 j L I L I + 𝑜 suc j
28 7 10 13 16 27 finds2 k ω I ω L I L I + 𝑜 k
29 28 impcom I ω k ω L I L I + 𝑜 k
30 fveq2 I + 𝑜 k = J L I + 𝑜 k = L J
31 30 sseq2d I + 𝑜 k = J L I L I + 𝑜 k L I L J
32 29 31 syl5ibcom I ω k ω I + 𝑜 k = J L I L J
33 32 rexlimdva I ω k ω I + 𝑜 k = J L I L J
34 33 adantr I ω J ω k ω I + 𝑜 k = J L I L J
35 4 34 sylbid I ω J ω I J L I L J
36 35 3impia I ω J ω I J L I L J