Metamath Proof Explorer


Theorem predbrg

Description: Closed form of elpredim . (Contributed by Scott Fenton, 13-Apr-2011) (Revised by NM, 5-Apr-2016)

Ref Expression
Assertion predbrg X V Y Pred R A X Y R X

Proof

Step Hyp Ref Expression
1 predeq3 x = X Pred R A x = Pred R A X
2 1 eleq2d x = X Y Pred R A x Y Pred R A X
3 breq2 x = X Y R x Y R X
4 2 3 imbi12d x = X Y Pred R A x Y R x Y Pred R A X Y R X
5 vex x V
6 5 elpredim Y Pred R A x Y R x
7 4 6 vtoclg X V Y Pred R A X Y R X
8 7 imp X V Y Pred R A X Y R X