Metamath Proof Explorer


Theorem predel

Description: Membership in the predecessor class implies membership in the base class. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Assertion predel Y Pred R A X Y A

Proof

Step Hyp Ref Expression
1 elinel1 Y A R -1 X Y A
2 df-pred Pred R A X = A R -1 X
3 1 2 eleq2s Y Pred R A X Y A