Metamath Proof Explorer


Theorem predep

Description: The predecessor under the membership relation is equivalent to an intersection. (Contributed by Scott Fenton, 27-Mar-2011) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion predep X B Pred E A X = A X

Proof

Step Hyp Ref Expression
1 df-pred Pred E A X = A E -1 X
2 relcnv Rel E -1
3 relimasn Rel E -1 E -1 X = y | X E -1 y
4 2 3 ax-mp E -1 X = y | X E -1 y
5 brcnvg X B y V X E -1 y y E X
6 5 elvd X B X E -1 y y E X
7 epelg X B y E X y X
8 6 7 bitrd X B X E -1 y y X
9 8 abbi1dv X B y | X E -1 y = X
10 4 9 eqtrid X B E -1 X = X
11 10 ineq2d X B A E -1 X = A X
12 1 11 eqtrid X B Pred E A X = A X