Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
The Predecessor Class
predeq1
Next ⟩
predeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
predeq1
Description:
Equality theorem for the predecessor class.
(Contributed by
Scott Fenton
, 2-Feb-2011)
Ref
Expression
Assertion
predeq1
⊢
R
=
S
→
Pred
R
A
X
=
Pred
S
A
X
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
A
=
A
2
eqid
⊢
X
=
X
3
predeq123
⊢
R
=
S
∧
A
=
A
∧
X
=
X
→
Pred
R
A
X
=
Pred
S
A
X
4
1
2
3
mp3an23
⊢
R
=
S
→
Pred
R
A
X
=
Pred
S
A
X