Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
The Predecessor Class
predeq123
Next ⟩
predeq1
Metamath Proof Explorer
Ascii
Unicode
Theorem
predeq123
Description:
Equality theorem for the predecessor class.
(Contributed by
Scott Fenton
, 13-Jun-2018)
Ref
Expression
Assertion
predeq123
⊢
R
=
S
∧
A
=
B
∧
X
=
Y
→
Pred
R
A
X
=
Pred
S
B
Y
Proof
Step
Hyp
Ref
Expression
1
simp2
⊢
R
=
S
∧
A
=
B
∧
X
=
Y
→
A
=
B
2
cnveq
⊢
R
=
S
→
R
-1
=
S
-1
3
2
3ad2ant1
⊢
R
=
S
∧
A
=
B
∧
X
=
Y
→
R
-1
=
S
-1
4
sneq
⊢
X
=
Y
→
X
=
Y
5
4
3ad2ant3
⊢
R
=
S
∧
A
=
B
∧
X
=
Y
→
X
=
Y
6
3
5
imaeq12d
⊢
R
=
S
∧
A
=
B
∧
X
=
Y
→
R
-1
X
=
S
-1
Y
7
1
6
ineq12d
⊢
R
=
S
∧
A
=
B
∧
X
=
Y
→
A
∩
R
-1
X
=
B
∩
S
-1
Y
8
df-pred
⊢
Pred
R
A
X
=
A
∩
R
-1
X
9
df-pred
⊢
Pred
S
B
Y
=
B
∩
S
-1
Y
10
7
8
9
3eqtr4g
⊢
R
=
S
∧
A
=
B
∧
X
=
Y
→
Pred
R
A
X
=
Pred
S
B
Y