Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
The Predecessor Class
predeq3
Next ⟩
nfpred
Metamath Proof Explorer
Ascii
Unicode
Theorem
predeq3
Description:
Equality theorem for the predecessor class.
(Contributed by
Scott Fenton
, 2-Feb-2011)
Ref
Expression
Assertion
predeq3
⊢
X
=
Y
→
Pred
R
A
X
=
Pred
R
A
Y
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
R
=
R
2
eqid
⊢
A
=
A
3
predeq123
⊢
R
=
R
∧
A
=
A
∧
X
=
Y
→
Pred
R
A
X
=
Pred
R
A
Y
4
1
2
3
mp3an12
⊢
X
=
Y
→
Pred
R
A
X
=
Pred
R
A
Y