Metamath Proof Explorer


Theorem predeq3

Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion predeq3 X = Y Pred R A X = Pred R A Y

Proof

Step Hyp Ref Expression
1 eqid R = R
2 eqid A = A
3 predeq123 R = R A = A X = Y Pred R A X = Pred R A Y
4 1 2 3 mp3an12 X = Y Pred R A X = Pred R A Y