Metamath Proof Explorer


Theorem predidm

Description: Idempotent law for the predecessor class. (Contributed by Scott Fenton, 29-Mar-2011)

Ref Expression
Assertion predidm Pred R Pred R A X X = Pred R A X

Proof

Step Hyp Ref Expression
1 df-pred Pred R Pred R A X X = Pred R A X R -1 X
2 df-pred Pred R A X = A R -1 X
3 inidm R -1 X R -1 X = R -1 X
4 3 ineq2i A R -1 X R -1 X = A R -1 X
5 2 4 eqtr4i Pred R A X = A R -1 X R -1 X
6 inass A R -1 X R -1 X = A R -1 X R -1 X
7 5 6 eqtr4i Pred R A X = A R -1 X R -1 X
8 2 ineq1i Pred R A X R -1 X = A R -1 X R -1 X
9 7 8 eqtr4i Pred R A X = Pred R A X R -1 X
10 1 9 eqtr4i Pred R Pred R A X X = Pred R A X