Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
The Predecessor Class
predidm
Next ⟩
predin
Metamath Proof Explorer
Ascii
Unicode
Theorem
predidm
Description:
Idempotent law for the predecessor class.
(Contributed by
Scott Fenton
, 29-Mar-2011)
Ref
Expression
Assertion
predidm
⊢
Pred
R
Pred
R
A
X
X
=
Pred
R
A
X
Proof
Step
Hyp
Ref
Expression
1
df-pred
⊢
Pred
R
Pred
R
A
X
X
=
Pred
R
A
X
∩
R
-1
X
2
df-pred
⊢
Pred
R
A
X
=
A
∩
R
-1
X
3
inidm
⊢
R
-1
X
∩
R
-1
X
=
R
-1
X
4
3
ineq2i
⊢
A
∩
R
-1
X
∩
R
-1
X
=
A
∩
R
-1
X
5
2
4
eqtr4i
⊢
Pred
R
A
X
=
A
∩
R
-1
X
∩
R
-1
X
6
inass
⊢
A
∩
R
-1
X
∩
R
-1
X
=
A
∩
R
-1
X
∩
R
-1
X
7
5
6
eqtr4i
⊢
Pred
R
A
X
=
A
∩
R
-1
X
∩
R
-1
X
8
2
ineq1i
⊢
Pred
R
A
X
∩
R
-1
X
=
A
∩
R
-1
X
∩
R
-1
X
9
7
8
eqtr4i
⊢
Pred
R
A
X
=
Pred
R
A
X
∩
R
-1
X
10
1
9
eqtr4i
⊢
Pred
R
Pred
R
A
X
X
=
Pred
R
A
X