Metamath Proof Explorer


Theorem prednn0

Description: The value of the predecessor class over NN0 . (Contributed by Scott Fenton, 9-May-2014)

Ref Expression
Assertion prednn0 N 0 Pred < 0 N = 0 N 1

Proof

Step Hyp Ref Expression
1 nn0uz 0 = 0
2 predeq2 0 = 0 Pred < 0 N = Pred < 0 N
3 1 2 ax-mp Pred < 0 N = Pred < 0 N
4 preduz N 0 Pred < 0 N = 0 N 1
5 3 4 eqtrid N 0 Pred < 0 N = 0 N 1
6 5 1 eleq2s N 0 Pred < 0 N = 0 N 1