Database
REAL AND COMPLEX NUMBERS
Order sets
Finite intervals of nonnegative integers
prednn0
Next ⟩
predfz
Metamath Proof Explorer
Ascii
Unicode
Theorem
prednn0
Description:
The value of the predecessor class over
NN0
.
(Contributed by
Scott Fenton
, 9-May-2014)
Ref
Expression
Assertion
prednn0
⊢
N
∈
ℕ
0
→
Pred
<
ℕ
0
N
=
0
…
N
−
1
Proof
Step
Hyp
Ref
Expression
1
nn0uz
⊢
ℕ
0
=
ℤ
≥
0
2
predeq2
⊢
ℕ
0
=
ℤ
≥
0
→
Pred
<
ℕ
0
N
=
Pred
<
ℤ
≥
0
N
3
1
2
ax-mp
⊢
Pred
<
ℕ
0
N
=
Pred
<
ℤ
≥
0
N
4
preduz
⊢
N
∈
ℤ
≥
0
→
Pred
<
ℤ
≥
0
N
=
0
…
N
−
1
5
3
4
eqtrid
⊢
N
∈
ℤ
≥
0
→
Pred
<
ℕ
0
N
=
0
…
N
−
1
6
5
1
eleq2s
⊢
N
∈
ℕ
0
→
Pred
<
ℕ
0
N
=
0
…
N
−
1