Metamath Proof Explorer


Theorem predpo

Description: Property of the predecessor class for partial orders. (Contributed by Scott Fenton, 28-Apr-2012) (Proof shortened by Scott Fenton, 28-Oct-2024)

Ref Expression
Assertion predpo R Po A X A Y Pred R A X Pred R A Y Pred R A X

Proof

Step Hyp Ref Expression
1 dfpo2 R Po A R I A = R A × A R A × A R
2 1 simprbi R Po A R A × A R A × A R
3 2 ad2antrr R Po A X A Y Pred R A X R A × A R A × A R
4 simpr R Po A X A Y Pred R A X Y Pred R A X
5 simplr R Po A X A Y Pred R A X X A
6 predtrss R A × A R A × A R Y Pred R A X X A Pred R A Y Pred R A X
7 3 4 5 6 syl3anc R Po A X A Y Pred R A X Pred R A Y Pred R A X
8 7 ex R Po A X A Y Pred R A X Pred R A Y Pred R A X