Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
The Predecessor Class
predss
Next ⟩
sspred
Metamath Proof Explorer
Ascii
Unicode
Theorem
predss
Description:
The predecessor class of
A
is a subset of
A
.
(Contributed by
Scott Fenton
, 2-Feb-2011)
Ref
Expression
Assertion
predss
⊢
Pred
R
A
X
⊆
A
Proof
Step
Hyp
Ref
Expression
1
df-pred
⊢
Pred
R
A
X
=
A
∩
R
-1
X
2
inss1
⊢
A
∩
R
-1
X
⊆
A
3
1
2
eqsstri
⊢
Pred
R
A
X
⊆
A