Metamath Proof Explorer


Theorem preimageiingt

Description: A preimage of a left-closed, unbounded above interval, expressed as an indexed intersection of preimages of open, unbounded above intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimageiingt.x x φ
preimageiingt.b φ x A B *
preimageiingt.c φ C
Assertion preimageiingt φ x A | C B = n x A | C 1 n < B

Proof

Step Hyp Ref Expression
1 preimageiingt.x x φ
2 preimageiingt.b φ x A B *
3 preimageiingt.c φ C
4 simpllr φ x A C B n x A
5 3 adantr φ n C
6 nnrecre n 1 n
7 6 adantl φ n 1 n
8 5 7 resubcld φ n C 1 n
9 8 rexrd φ n C 1 n *
10 9 ad4ant14 φ x A C B n C 1 n *
11 3 rexrd φ C *
12 11 ad3antrrr φ x A C B n C *
13 2 ad2antrr φ x A C B n B *
14 nnrecrp n 1 n +
15 14 adantl φ n 1 n +
16 5 15 ltsubrpd φ n C 1 n < C
17 16 ad4ant14 φ x A C B n C 1 n < C
18 simplr φ x A C B n C B
19 10 12 13 17 18 xrltletrd φ x A C B n C 1 n < B
20 4 19 rabidd φ x A C B n x x A | C 1 n < B
21 20 ralrimiva φ x A C B n x x A | C 1 n < B
22 eliin x V x n x A | C 1 n < B n x x A | C 1 n < B
23 22 elv x n x A | C 1 n < B n x x A | C 1 n < B
24 21 23 sylibr φ x A C B x n x A | C 1 n < B
25 24 ex φ x A C B x n x A | C 1 n < B
26 1 25 ralrimia φ x A C B x n x A | C 1 n < B
27 nfcv _ x
28 nfrab1 _ x x A | C 1 n < B
29 27 28 nfiin _ x n x A | C 1 n < B
30 29 rabssf x A | C B n x A | C 1 n < B x A C B x n x A | C 1 n < B
31 26 30 sylibr φ x A | C B n x A | C 1 n < B
32 nnn0
33 iinrab n x A | C 1 n < B = x A | n C 1 n < B
34 32 33 ax-mp n x A | C 1 n < B = x A | n C 1 n < B
35 9 ad4ant13 φ x A n C 1 n < B C 1 n *
36 2 ad2antrr φ x A n C 1 n < B B *
37 simpr φ x A n C 1 n < B C 1 n < B
38 35 36 37 xrltled φ x A n C 1 n < B C 1 n B
39 38 ex φ x A n C 1 n < B C 1 n B
40 39 ralimdva φ x A n C 1 n < B n C 1 n B
41 40 imp φ x A n C 1 n < B n C 1 n B
42 nfv n φ x A
43 nfra1 n n C 1 n < B
44 42 43 nfan n φ x A n C 1 n < B
45 3 ad2antrr φ x A n C 1 n < B C
46 2 adantr φ x A n C 1 n < B B *
47 44 45 46 xrralrecnnge φ x A n C 1 n < B C B n C 1 n B
48 41 47 mpbird φ x A n C 1 n < B C B
49 48 ex φ x A n C 1 n < B C B
50 1 49 ss2rabdf φ x A | n C 1 n < B x A | C B
51 34 50 eqsstrid φ n x A | C 1 n < B x A | C B
52 31 51 eqssd φ x A | C B = n x A | C 1 n < B