Metamath Proof Explorer


Theorem preimaleiinlt

Description: A preimage of a left-open, right-closed, unbounded below interval, expressed as an indexed intersection of preimages of open, unbound below intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses preimaleiinlt.x x φ
preimaleiinlt.b φ x A B *
preimaleiinlt.c φ C
Assertion preimaleiinlt φ x A | B C = n x A | B < C + 1 n

Proof

Step Hyp Ref Expression
1 preimaleiinlt.x x φ
2 preimaleiinlt.b φ x A B *
3 preimaleiinlt.c φ C
4 simpllr φ x A B C n x A
5 2 ad2antrr φ x A B C n B *
6 3 ad3antrrr φ x A B C n C
7 6 rexrd φ x A B C n C *
8 3 adantr φ n C
9 nnrecre n 1 n
10 9 adantl φ n 1 n
11 8 10 readdcld φ n C + 1 n
12 11 ad4ant14 φ x A B C n C + 1 n
13 12 rexrd φ x A B C n C + 1 n *
14 simplr φ x A B C n B C
15 nnrecrp n 1 n +
16 15 adantl φ n 1 n +
17 8 16 ltaddrpd φ n C < C + 1 n
18 17 ad4ant14 φ x A B C n C < C + 1 n
19 5 7 13 14 18 xrlelttrd φ x A B C n B < C + 1 n
20 4 19 rabidd φ x A B C n x x A | B < C + 1 n
21 20 ralrimiva φ x A B C n x x A | B < C + 1 n
22 eliin x V x n x A | B < C + 1 n n x x A | B < C + 1 n
23 22 elv x n x A | B < C + 1 n n x x A | B < C + 1 n
24 21 23 sylibr φ x A B C x n x A | B < C + 1 n
25 24 ex φ x A B C x n x A | B < C + 1 n
26 1 25 ralrimia φ x A B C x n x A | B < C + 1 n
27 nfcv _ x
28 nfrab1 _ x x A | B < C + 1 n
29 27 28 nfiin _ x n x A | B < C + 1 n
30 29 rabssf x A | B C n x A | B < C + 1 n x A B C x n x A | B < C + 1 n
31 26 30 sylibr φ x A | B C n x A | B < C + 1 n
32 nnn0
33 iinrab n x A | B < C + 1 n = x A | n B < C + 1 n
34 32 33 mp1i φ n x A | B < C + 1 n = x A | n B < C + 1 n
35 2 ad2antrr φ x A n B < C + 1 n B *
36 11 ad4ant13 φ x A n B < C + 1 n C + 1 n
37 36 rexrd φ x A n B < C + 1 n C + 1 n *
38 simpr φ x A n B < C + 1 n B < C + 1 n
39 35 37 38 xrltled φ x A n B < C + 1 n B C + 1 n
40 39 ex φ x A n B < C + 1 n B C + 1 n
41 40 ralimdva φ x A n B < C + 1 n n B C + 1 n
42 41 imp φ x A n B < C + 1 n n B C + 1 n
43 nfv n φ x A
44 nfra1 n n B < C + 1 n
45 43 44 nfan n φ x A n B < C + 1 n
46 2 adantr φ x A n B < C + 1 n B *
47 3 ad2antrr φ x A n B < C + 1 n C
48 45 46 47 xrralrecnnle φ x A n B < C + 1 n B C n B C + 1 n
49 42 48 mpbird φ x A n B < C + 1 n B C
50 49 ex φ x A n B < C + 1 n B C
51 1 50 ss2rabdf φ x A | n B < C + 1 n x A | B C
52 34 51 eqsstrd φ n x A | B < C + 1 n x A | B C
53 31 52 eqssd φ x A | B C = n x A | B < C + 1 n