Metamath Proof Explorer


Theorem preleqg

Description: Equality of two unordered pairs when one member of each pair contains the other member. Closed form of preleq . (Contributed by AV, 15-Jun-2022)

Ref Expression
Assertion preleqg A B B V C D A B = C D A = C B = D

Proof

Step Hyp Ref Expression
1 elneq A B A B
2 1 3ad2ant1 A B B V C D A B
3 preq12nebg A B B V A B A B = C D A = C B = D A = D B = C
4 2 3 syld3an3 A B B V C D A B = C D A = C B = D A = D B = C
5 eleq12 A = D B = C A B D C
6 elnotel D C ¬ C D
7 6 pm2.21d D C C D A = C B = D
8 5 7 syl6bi A = D B = C A B C D A = C B = D
9 8 com3l A B C D A = D B = C A = C B = D
10 9 a1d A B B V C D A = D B = C A = C B = D
11 10 3imp A B B V C D A = D B = C A = C B = D
12 11 com12 A = D B = C A B B V C D A = C B = D
13 12 jao1i A = C B = D A = D B = C A B B V C D A = C B = D
14 13 com12 A B B V C D A = C B = D A = D B = C A = C B = D
15 4 14 sylbid A B B V C D A B = C D A = C B = D
16 15 imp A B B V C D A B = C D A = C B = D