Metamath Proof Explorer


Theorem prelrrx2

Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023)

Ref Expression
Hypotheses prelrrx2.i I = 1 2
prelrrx2.b P = I
Assertion prelrrx2 A B 1 A 2 B P

Proof

Step Hyp Ref Expression
1 prelrrx2.i I = 1 2
2 prelrrx2.b P = I
3 1ex 1 V
4 2ex 2 V
5 3 4 pm3.2i 1 V 2 V
6 5 a1i A B 1 V 2 V
7 id A B A B
8 1ne2 1 2
9 8 a1i A B 1 2
10 6 7 9 3jca A B 1 V 2 V A B 1 2
11 fprg 1 V 2 V A B 1 2 1 A 2 B : 1 2 A B
12 10 11 syl A B 1 A 2 B : 1 2 A B
13 prssi A B A B
14 12 13 fssd A B 1 A 2 B : 1 2
15 reex V
16 prex 1 2 V
17 15 16 pm3.2i V 1 2 V
18 elmapg V 1 2 V 1 A 2 B 1 2 1 A 2 B : 1 2
19 17 18 ax-mp 1 A 2 B 1 2 1 A 2 B : 1 2
20 14 19 sylibr A B 1 A 2 B 1 2
21 1 oveq2i I = 1 2
22 2 21 eqtri P = 1 2
23 22 eleq2i 1 A 2 B P 1 A 2 B 1 2
24 20 23 sylibr A B 1 A 2 B P