Metamath Proof Explorer


Theorem preq12b

Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996)

Ref Expression
Hypotheses preqr1.a A V
preqr1.b B V
preq12b.c C V
preq12b.d D V
Assertion preq12b A B = C D A = C B = D A = D B = C

Proof

Step Hyp Ref Expression
1 preqr1.a A V
2 preqr1.b B V
3 preq12b.c C V
4 preq12b.d D V
5 1 prid1 A A B
6 eleq2 A B = C D A A B A C D
7 5 6 mpbii A B = C D A C D
8 1 elpr A C D A = C A = D
9 7 8 sylib A B = C D A = C A = D
10 preq1 A = C A B = C B
11 10 eqeq1d A = C A B = C D C B = C D
12 2 4 preqr2 C B = C D B = D
13 11 12 syl6bi A = C A B = C D B = D
14 13 com12 A B = C D A = C B = D
15 14 ancld A B = C D A = C A = C B = D
16 prcom C D = D C
17 16 eqeq2i A B = C D A B = D C
18 preq1 A = D A B = D B
19 18 eqeq1d A = D A B = D C D B = D C
20 2 3 preqr2 D B = D C B = C
21 19 20 syl6bi A = D A B = D C B = C
22 21 com12 A B = D C A = D B = C
23 17 22 sylbi A B = C D A = D B = C
24 23 ancld A B = C D A = D A = D B = C
25 15 24 orim12d A B = C D A = C A = D A = C B = D A = D B = C
26 9 25 mpd A B = C D A = C B = D A = D B = C
27 preq12 A = C B = D A B = C D
28 preq12 A = D B = C A B = D C
29 prcom D C = C D
30 28 29 eqtrdi A = D B = C A B = C D
31 27 30 jaoi A = C B = D A = D B = C A B = C D
32 26 31 impbii A B = C D A = C B = D A = D B = C