Metamath Proof Explorer


Theorem preq12bg

Description: Closed form of preq12b . (Contributed by Scott Fenton, 28-Mar-2014)

Ref Expression
Assertion preq12bg A V B W C X D Y A B = C D A = C B = D A = D B = C

Proof

Step Hyp Ref Expression
1 preq1 x = A x y = A y
2 1 eqeq1d x = A x y = z D A y = z D
3 eqeq1 x = A x = z A = z
4 3 anbi1d x = A x = z y = D A = z y = D
5 eqeq1 x = A x = D A = D
6 5 anbi1d x = A x = D y = z A = D y = z
7 4 6 orbi12d x = A x = z y = D x = D y = z A = z y = D A = D y = z
8 2 7 bibi12d x = A x y = z D x = z y = D x = D y = z A y = z D A = z y = D A = D y = z
9 8 imbi2d x = A D Y x y = z D x = z y = D x = D y = z D Y A y = z D A = z y = D A = D y = z
10 preq2 y = B A y = A B
11 10 eqeq1d y = B A y = z D A B = z D
12 eqeq1 y = B y = D B = D
13 12 anbi2d y = B A = z y = D A = z B = D
14 eqeq1 y = B y = z B = z
15 14 anbi2d y = B A = D y = z A = D B = z
16 13 15 orbi12d y = B A = z y = D A = D y = z A = z B = D A = D B = z
17 11 16 bibi12d y = B A y = z D A = z y = D A = D y = z A B = z D A = z B = D A = D B = z
18 17 imbi2d y = B D Y A y = z D A = z y = D A = D y = z D Y A B = z D A = z B = D A = D B = z
19 preq1 z = C z D = C D
20 19 eqeq2d z = C A B = z D A B = C D
21 eqeq2 z = C A = z A = C
22 21 anbi1d z = C A = z B = D A = C B = D
23 eqeq2 z = C B = z B = C
24 23 anbi2d z = C A = D B = z A = D B = C
25 22 24 orbi12d z = C A = z B = D A = D B = z A = C B = D A = D B = C
26 20 25 bibi12d z = C A B = z D A = z B = D A = D B = z A B = C D A = C B = D A = D B = C
27 26 imbi2d z = C D Y A B = z D A = z B = D A = D B = z D Y A B = C D A = C B = D A = D B = C
28 preq2 w = D z w = z D
29 28 eqeq2d w = D x y = z w x y = z D
30 eqeq2 w = D y = w y = D
31 30 anbi2d w = D x = z y = w x = z y = D
32 eqeq2 w = D x = w x = D
33 32 anbi1d w = D x = w y = z x = D y = z
34 31 33 orbi12d w = D x = z y = w x = w y = z x = z y = D x = D y = z
35 vex x V
36 vex y V
37 vex z V
38 vex w V
39 35 36 37 38 preq12b x y = z w x = z y = w x = w y = z
40 29 34 39 vtoclbg D Y x y = z D x = z y = D x = D y = z
41 40 a1i x V y W z X D Y x y = z D x = z y = D x = D y = z
42 9 18 27 41 vtocl3ga A V B W C X D Y A B = C D A = C B = D A = D B = C
43 42 3expa A V B W C X D Y A B = C D A = C B = D A = D B = C
44 43 impr A V B W C X D Y A B = C D A = C B = D A = D B = C