Metamath Proof Explorer


Theorem preq12bg

Description: Closed form of preq12b . (Contributed by Scott Fenton, 28-Mar-2014)

Ref Expression
Assertion preq12bg AVBWCXDYAB=CDA=CB=DA=DB=C

Proof

Step Hyp Ref Expression
1 preq1 x=Axy=Ay
2 1 eqeq1d x=Axy=zDAy=zD
3 eqeq1 x=Ax=zA=z
4 3 anbi1d x=Ax=zy=DA=zy=D
5 eqeq1 x=Ax=DA=D
6 5 anbi1d x=Ax=Dy=zA=Dy=z
7 4 6 orbi12d x=Ax=zy=Dx=Dy=zA=zy=DA=Dy=z
8 2 7 bibi12d x=Axy=zDx=zy=Dx=Dy=zAy=zDA=zy=DA=Dy=z
9 8 imbi2d x=ADYxy=zDx=zy=Dx=Dy=zDYAy=zDA=zy=DA=Dy=z
10 preq2 y=BAy=AB
11 10 eqeq1d y=BAy=zDAB=zD
12 eqeq1 y=By=DB=D
13 12 anbi2d y=BA=zy=DA=zB=D
14 eqeq1 y=By=zB=z
15 14 anbi2d y=BA=Dy=zA=DB=z
16 13 15 orbi12d y=BA=zy=DA=Dy=zA=zB=DA=DB=z
17 11 16 bibi12d y=BAy=zDA=zy=DA=Dy=zAB=zDA=zB=DA=DB=z
18 17 imbi2d y=BDYAy=zDA=zy=DA=Dy=zDYAB=zDA=zB=DA=DB=z
19 preq1 z=CzD=CD
20 19 eqeq2d z=CAB=zDAB=CD
21 eqeq2 z=CA=zA=C
22 21 anbi1d z=CA=zB=DA=CB=D
23 eqeq2 z=CB=zB=C
24 23 anbi2d z=CA=DB=zA=DB=C
25 22 24 orbi12d z=CA=zB=DA=DB=zA=CB=DA=DB=C
26 20 25 bibi12d z=CAB=zDA=zB=DA=DB=zAB=CDA=CB=DA=DB=C
27 26 imbi2d z=CDYAB=zDA=zB=DA=DB=zDYAB=CDA=CB=DA=DB=C
28 preq2 w=Dzw=zD
29 28 eqeq2d w=Dxy=zwxy=zD
30 eqeq2 w=Dy=wy=D
31 30 anbi2d w=Dx=zy=wx=zy=D
32 eqeq2 w=Dx=wx=D
33 32 anbi1d w=Dx=wy=zx=Dy=z
34 31 33 orbi12d w=Dx=zy=wx=wy=zx=zy=Dx=Dy=z
35 vex xV
36 vex yV
37 vex zV
38 vex wV
39 35 36 37 38 preq12b xy=zwx=zy=wx=wy=z
40 29 34 39 vtoclbg DYxy=zDx=zy=Dx=Dy=z
41 40 a1i xVyWzXDYxy=zDx=zy=Dx=Dy=z
42 9 18 27 41 vtocl3ga AVBWCXDYAB=CDA=CB=DA=DB=C
43 42 3expa AVBWCXDYAB=CDA=CB=DA=DB=C
44 43 impr AVBWCXDYAB=CDA=CB=DA=DB=C