Metamath Proof Explorer


Theorem preq12nebg

Description: Equality relationship for two proper unordered pairs. (Contributed by AV, 12-Jun-2022)

Ref Expression
Assertion preq12nebg A V B W A B A B = C D A = C B = D A = D B = C

Proof

Step Hyp Ref Expression
1 3simpa A V B W A B A V B W
2 1 anim1i A V B W A B C V D V A V B W C V D V
3 2 ancoms C V D V A V B W A B A V B W C V D V
4 preq12bg A V B W C V D V A B = C D A = C B = D A = D B = C
5 3 4 syl C V D V A V B W A B A B = C D A = C B = D A = D B = C
6 5 ex C V D V A V B W A B A B = C D A = C B = D A = D B = C
7 ianor ¬ C V D V ¬ C V ¬ D V
8 prneprprc A V B W A B ¬ C V A B C D
9 8 ancoms ¬ C V A V B W A B A B C D
10 eqneqall A B = C D A B C D A = C B = D A = D B = C
11 9 10 syl5com ¬ C V A V B W A B A B = C D A = C B = D A = D B = C
12 prneprprc A V B W A B ¬ D V A B D C
13 12 ancoms ¬ D V A V B W A B A B D C
14 prcom C D = D C
15 14 eqeq2i A B = C D A B = D C
16 eqneqall A B = D C A B D C A = C B = D A = D B = C
17 15 16 sylbi A B = C D A B D C A = C B = D A = D B = C
18 13 17 syl5com ¬ D V A V B W A B A B = C D A = C B = D A = D B = C
19 11 18 jaoian ¬ C V ¬ D V A V B W A B A B = C D A = C B = D A = D B = C
20 preq12 A = C B = D A B = C D
21 preq12 A = D B = C A B = D C
22 prcom D C = C D
23 21 22 eqtrdi A = D B = C A B = C D
24 20 23 jaoi A = C B = D A = D B = C A B = C D
25 19 24 impbid1 ¬ C V ¬ D V A V B W A B A B = C D A = C B = D A = D B = C
26 25 ex ¬ C V ¬ D V A V B W A B A B = C D A = C B = D A = D B = C
27 7 26 sylbi ¬ C V D V A V B W A B A B = C D A = C B = D A = D B = C
28 6 27 pm2.61i A V B W A B A B = C D A = C B = D A = D B = C