Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
preqr1
Metamath Proof Explorer
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have
the same second element, the first elements are equal. (Contributed by NM , 18-Oct-1995)
Ref
Expression
Hypotheses
preqr1.a
⊢ A ∈ V
preqr1.b
⊢ B ∈ V
Assertion
preqr1
⊢ A C = B C → A = B
Proof
Step
Hyp
Ref
Expression
1
preqr1.a
⊢ A ∈ V
2
preqr1.b
⊢ B ∈ V
3
id
⊢ A ∈ V → A ∈ V
4
2
a1i
⊢ A ∈ V → B ∈ V
5
3 4
preq1b
⊢ A ∈ V → A C = B C ↔ A = B
6
1 5
ax-mp
⊢ A C = B C ↔ A = B
7
6
biimpi
⊢ A C = B C → A = B