Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
preqr2
Metamath Proof Explorer
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have
the same first element, the second elements are equal. (Contributed by NM , 15-Jul-1993)
Ref
Expression
Hypotheses
preqr1.a
⊢ A ∈ V
preqr1.b
⊢ B ∈ V
Assertion
preqr2
⊢ C A = C B → A = B
Proof
Step
Hyp
Ref
Expression
1
preqr1.a
⊢ A ∈ V
2
preqr1.b
⊢ B ∈ V
3
prcom
⊢ C A = A C
4
prcom
⊢ C B = B C
5
3 4
eqeq12i
⊢ C A = C B ↔ A C = B C
6
1 2
preqr1
⊢ A C = B C → A = B
7
5 6
sylbi
⊢ C A = C B → A = B