Metamath Proof Explorer


Theorem preqsn

Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 12-Jun-2022)

Ref Expression
Hypotheses preqsn.1 A V
preqsn.2 B V
Assertion preqsn A B = C A = B B = C

Proof

Step Hyp Ref Expression
1 preqsn.1 A V
2 preqsn.2 B V
3 id A V A V
4 2 a1i A V B V
5 3 4 preqsnd A V A B = C A = C B = C
6 1 5 ax-mp A B = C A = C B = C
7 eqeq2 B = C A = B A = C
8 7 pm5.32ri A = B B = C A = C B = C
9 6 8 bitr4i A B = C A = B B = C