Metamath Proof Explorer


Theorem primefldgen1

Description: The prime field of a division ring is the subfield generated by the multiplicative identity element. In general, we should write "prime division ring", but since most later usages are in the case where the ambient ring is commutative, we keep the term "prime field". (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Hypotheses primefldgen1.b B = Base R
primefldgen1.1 1 ˙ = 1 R
primefldgen1.r φ R DivRing
Assertion primefldgen1 Could not format assertion : No typesetting found for |- ( ph -> |^| ( SubDRing ` R ) = ( R fldGen { .1. } ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 primefldgen1.b B = Base R
2 primefldgen1.1 1 ˙ = 1 R
3 primefldgen1.r φ R DivRing
4 issdrg a SubDRing R R DivRing a SubRing R R 𝑠 a DivRing
5 4 simp2bi a SubDRing R a SubRing R
6 2 subrg1cl a SubRing R 1 ˙ a
7 5 6 syl a SubDRing R 1 ˙ a
8 7 adantl φ a SubDRing R 1 ˙ a
9 8 snssd φ a SubDRing R 1 ˙ a
10 9 ralrimiva φ a SubDRing R 1 ˙ a
11 rabid2 SubDRing R = a SubDRing R | 1 ˙ a a SubDRing R 1 ˙ a
12 10 11 sylibr φ SubDRing R = a SubDRing R | 1 ˙ a
13 12 inteqd φ SubDRing R = a SubDRing R | 1 ˙ a
14 3 drngringd φ R Ring
15 1 2 ringidcl R Ring 1 ˙ B
16 14 15 syl φ 1 ˙ B
17 16 snssd φ 1 ˙ B
18 1 3 17 fldgenval Could not format ( ph -> ( R fldGen { .1. } ) = |^| { a e. ( SubDRing ` R ) | { .1. } C_ a } ) : No typesetting found for |- ( ph -> ( R fldGen { .1. } ) = |^| { a e. ( SubDRing ` R ) | { .1. } C_ a } ) with typecode |-
19 13 18 eqtr4d Could not format ( ph -> |^| ( SubDRing ` R ) = ( R fldGen { .1. } ) ) : No typesetting found for |- ( ph -> |^| ( SubDRing ` R ) = ( R fldGen { .1. } ) ) with typecode |-