Metamath Proof Explorer


Theorem prinfzo0

Description: The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021)

Ref Expression
Assertion prinfzo0 M M N M + 1 ..^ N =

Proof

Step Hyp Ref Expression
1 elfz3 M M M M
2 fznuz M M M ¬ M M + 1
3 1 2 syl M ¬ M M + 1
4 3 3mix1d M ¬ M M + 1 ¬ N ¬ M < N
5 3ianor ¬ M M + 1 N M < N ¬ M M + 1 ¬ N ¬ M < N
6 elfzo2 M M + 1 ..^ N M M + 1 N M < N
7 5 6 xchnxbir ¬ M M + 1 ..^ N ¬ M M + 1 ¬ N ¬ M < N
8 4 7 sylibr M ¬ M M + 1 ..^ N
9 incom M M + 1 ..^ N = M + 1 ..^ N M
10 9 eqeq1i M M + 1 ..^ N = M + 1 ..^ N M =
11 disjsn M + 1 ..^ N M = ¬ M M + 1 ..^ N
12 10 11 bitri M M + 1 ..^ N = ¬ M M + 1 ..^ N
13 8 12 sylibr M M M + 1 ..^ N =
14 fzonel ¬ N M + 1 ..^ N
15 14 a1i M ¬ N M + 1 ..^ N
16 incom N M + 1 ..^ N = M + 1 ..^ N N
17 16 eqeq1i N M + 1 ..^ N = M + 1 ..^ N N =
18 disjsn M + 1 ..^ N N = ¬ N M + 1 ..^ N
19 17 18 bitri N M + 1 ..^ N = ¬ N M + 1 ..^ N
20 15 19 sylibr M N M + 1 ..^ N =
21 df-pr M N = M N
22 21 ineq1i M N M + 1 ..^ N = M N M + 1 ..^ N
23 22 eqeq1i M N M + 1 ..^ N = M N M + 1 ..^ N =
24 undisj1 M M + 1 ..^ N = N M + 1 ..^ N = M N M + 1 ..^ N =
25 23 24 bitr4i M N M + 1 ..^ N = M M + 1 ..^ N = N M + 1 ..^ N =
26 13 20 25 sylanbrc M M N M + 1 ..^ N =