Metamath Proof Explorer


Theorem prlem1

Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 5-Jan-2013)

Ref Expression
Hypotheses prlem1.1 φ η χ
prlem1.2 ψ ¬ θ
Assertion prlem1 φ ψ ψ χ θ τ η

Proof

Step Hyp Ref Expression
1 prlem1.1 φ η χ
2 prlem1.2 ψ ¬ θ
3 1 biimprd φ χ η
4 3 adantld φ ψ χ η
5 2 pm2.21d ψ θ η
6 5 adantrd ψ θ τ η
7 4 6 jaao φ ψ ψ χ θ τ η
8 7 ex φ ψ ψ χ θ τ η