Metamath Proof Explorer


Theorem prlem934

Description: Lemma 9-3.4 of Gleason p. 122. (Contributed by NM, 25-Mar-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Hypothesis prlem934.1 B V
Assertion prlem934 A 𝑷 x A ¬ x + 𝑸 B A

Proof

Step Hyp Ref Expression
1 prlem934.1 B V
2 prn0 A 𝑷 A
3 r19.2z A x A x + 𝑸 B A x A x + 𝑸 B A
4 3 ex A x A x + 𝑸 B A x A x + 𝑸 B A
5 2 4 syl A 𝑷 x A x + 𝑸 B A x A x + 𝑸 B A
6 prpssnq A 𝑷 A 𝑸
7 6 pssssd A 𝑷 A 𝑸
8 7 sseld A 𝑷 x + 𝑸 B A x + 𝑸 B 𝑸
9 addnqf + 𝑸 : 𝑸 × 𝑸 𝑸
10 9 fdmi dom + 𝑸 = 𝑸 × 𝑸
11 0nnq ¬ 𝑸
12 10 11 ndmovrcl x + 𝑸 B 𝑸 x 𝑸 B 𝑸
13 12 simprd x + 𝑸 B 𝑸 B 𝑸
14 8 13 syl6com x + 𝑸 B A A 𝑷 B 𝑸
15 14 rexlimivw x A x + 𝑸 B A A 𝑷 B 𝑸
16 15 com12 A 𝑷 x A x + 𝑸 B A B 𝑸
17 oveq2 b = B x + 𝑸 b = x + 𝑸 B
18 17 eleq1d b = B x + 𝑸 b A x + 𝑸 B A
19 18 ralbidv b = B x A x + 𝑸 b A x A x + 𝑸 B A
20 19 notbid b = B ¬ x A x + 𝑸 b A ¬ x A x + 𝑸 B A
21 20 imbi2d b = B A 𝑷 ¬ x A x + 𝑸 b A A 𝑷 ¬ x A x + 𝑸 B A
22 dfpss2 A 𝑸 A 𝑸 ¬ A = 𝑸
23 6 22 sylib A 𝑷 A 𝑸 ¬ A = 𝑸
24 23 simprd A 𝑷 ¬ A = 𝑸
25 24 adantr A 𝑷 b 𝑸 ¬ A = 𝑸
26 7 3ad2ant1 A 𝑷 b 𝑸 x A x + 𝑸 b A A 𝑸
27 simpl1 A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 A 𝑷
28 n0 A y y A
29 2 28 sylib A 𝑷 y y A
30 27 29 syl A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y y A
31 simprl A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A w 𝑸
32 simpl2 A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A b 𝑸
33 recclnq b 𝑸 * 𝑸 b 𝑸
34 mulclnq w 𝑸 * 𝑸 b 𝑸 w 𝑸 * 𝑸 b 𝑸
35 archnq w 𝑸 * 𝑸 b 𝑸 z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜
36 34 35 syl w 𝑸 * 𝑸 b 𝑸 z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜
37 33 36 sylan2 w 𝑸 b 𝑸 z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜
38 31 32 37 syl2anc A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜
39 simpll2 A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 b 𝑸
40 simplrl A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 w 𝑸
41 simprr A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜
42 ltmnq b 𝑸 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 b 𝑸 w 𝑸 * 𝑸 b < 𝑸 b 𝑸 z 1 𝑜
43 vex b V
44 vex w V
45 fvex * 𝑸 b V
46 mulcomnq v 𝑸 x = x 𝑸 v
47 mulassnq v 𝑸 x 𝑸 y = v 𝑸 x 𝑸 y
48 43 44 45 46 47 caov12 b 𝑸 w 𝑸 * 𝑸 b = w 𝑸 b 𝑸 * 𝑸 b
49 mulcomnq b 𝑸 z 1 𝑜 = z 1 𝑜 𝑸 b
50 48 49 breq12i b 𝑸 w 𝑸 * 𝑸 b < 𝑸 b 𝑸 z 1 𝑜 w 𝑸 b 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 𝑸 b
51 42 50 bitrdi b 𝑸 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 w 𝑸 b 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 𝑸 b
52 51 adantr b 𝑸 w 𝑸 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 w 𝑸 b 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 𝑸 b
53 recidnq b 𝑸 b 𝑸 * 𝑸 b = 1 𝑸
54 53 oveq2d b 𝑸 w 𝑸 b 𝑸 * 𝑸 b = w 𝑸 1 𝑸
55 mulidnq w 𝑸 w 𝑸 1 𝑸 = w
56 54 55 sylan9eq b 𝑸 w 𝑸 w 𝑸 b 𝑸 * 𝑸 b = w
57 56 breq1d b 𝑸 w 𝑸 w 𝑸 b 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 𝑸 b w < 𝑸 z 1 𝑜 𝑸 b
58 52 57 bitrd b 𝑸 w 𝑸 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 w < 𝑸 z 1 𝑜 𝑸 b
59 58 biimpa b 𝑸 w 𝑸 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 w < 𝑸 z 1 𝑜 𝑸 b
60 39 40 41 59 syl21anc A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 w < 𝑸 z 1 𝑜 𝑸 b
61 simprl A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 z 𝑵
62 pinq z 𝑵 z 1 𝑜 𝑸
63 mulclnq z 1 𝑜 𝑸 b 𝑸 z 1 𝑜 𝑸 b 𝑸
64 62 63 sylan z 𝑵 b 𝑸 z 1 𝑜 𝑸 b 𝑸
65 61 39 64 syl2anc A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 z 1 𝑜 𝑸 b 𝑸
66 simpll1 A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 A 𝑷
67 simplrr A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 y A
68 elprnq A 𝑷 y A y 𝑸
69 66 67 68 syl2anc A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 y 𝑸
70 ltaddnq z 1 𝑜 𝑸 b 𝑸 y 𝑸 z 1 𝑜 𝑸 b < 𝑸 z 1 𝑜 𝑸 b + 𝑸 y
71 addcomnq z 1 𝑜 𝑸 b + 𝑸 y = y + 𝑸 z 1 𝑜 𝑸 b
72 70 71 breqtrdi z 1 𝑜 𝑸 b 𝑸 y 𝑸 z 1 𝑜 𝑸 b < 𝑸 y + 𝑸 z 1 𝑜 𝑸 b
73 65 69 72 syl2anc A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 z 1 𝑜 𝑸 b < 𝑸 y + 𝑸 z 1 𝑜 𝑸 b
74 ltsonq < 𝑸 Or 𝑸
75 ltrelnq < 𝑸 𝑸 × 𝑸
76 74 75 sotri w < 𝑸 z 1 𝑜 𝑸 b z 1 𝑜 𝑸 b < 𝑸 y + 𝑸 z 1 𝑜 𝑸 b w < 𝑸 y + 𝑸 z 1 𝑜 𝑸 b
77 60 73 76 syl2anc A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 w < 𝑸 y + 𝑸 z 1 𝑜 𝑸 b
78 simpll3 A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 x A x + 𝑸 b A
79 opeq1 w = 1 𝑜 w 1 𝑜 = 1 𝑜 1 𝑜
80 df-1nq 1 𝑸 = 1 𝑜 1 𝑜
81 79 80 eqtr4di w = 1 𝑜 w 1 𝑜 = 1 𝑸
82 81 oveq1d w = 1 𝑜 w 1 𝑜 𝑸 b = 1 𝑸 𝑸 b
83 82 oveq2d w = 1 𝑜 y + 𝑸 w 1 𝑜 𝑸 b = y + 𝑸 1 𝑸 𝑸 b
84 83 eleq1d w = 1 𝑜 y + 𝑸 w 1 𝑜 𝑸 b A y + 𝑸 1 𝑸 𝑸 b A
85 84 imbi2d w = 1 𝑜 b 𝑸 x A x + 𝑸 b A y A y + 𝑸 w 1 𝑜 𝑸 b A b 𝑸 x A x + 𝑸 b A y A y + 𝑸 1 𝑸 𝑸 b A
86 opeq1 w = z w 1 𝑜 = z 1 𝑜
87 86 oveq1d w = z w 1 𝑜 𝑸 b = z 1 𝑜 𝑸 b
88 87 oveq2d w = z y + 𝑸 w 1 𝑜 𝑸 b = y + 𝑸 z 1 𝑜 𝑸 b
89 88 eleq1d w = z y + 𝑸 w 1 𝑜 𝑸 b A y + 𝑸 z 1 𝑜 𝑸 b A
90 89 imbi2d w = z b 𝑸 x A x + 𝑸 b A y A y + 𝑸 w 1 𝑜 𝑸 b A b 𝑸 x A x + 𝑸 b A y A y + 𝑸 z 1 𝑜 𝑸 b A
91 opeq1 w = z + 𝑵 1 𝑜 w 1 𝑜 = z + 𝑵 1 𝑜 1 𝑜
92 91 oveq1d w = z + 𝑵 1 𝑜 w 1 𝑜 𝑸 b = z + 𝑵 1 𝑜 1 𝑜 𝑸 b
93 92 oveq2d w = z + 𝑵 1 𝑜 y + 𝑸 w 1 𝑜 𝑸 b = y + 𝑸 z + 𝑵 1 𝑜 1 𝑜 𝑸 b
94 93 eleq1d w = z + 𝑵 1 𝑜 y + 𝑸 w 1 𝑜 𝑸 b A y + 𝑸 z + 𝑵 1 𝑜 1 𝑜 𝑸 b A
95 94 imbi2d w = z + 𝑵 1 𝑜 b 𝑸 x A x + 𝑸 b A y A y + 𝑸 w 1 𝑜 𝑸 b A b 𝑸 x A x + 𝑸 b A y A y + 𝑸 z + 𝑵 1 𝑜 1 𝑜 𝑸 b A
96 mulcomnq 1 𝑸 𝑸 b = b 𝑸 1 𝑸
97 mulidnq b 𝑸 b 𝑸 1 𝑸 = b
98 96 97 eqtrid b 𝑸 1 𝑸 𝑸 b = b
99 oveq1 x = y x + 𝑸 b = y + 𝑸 b
100 99 eleq1d x = y x + 𝑸 b A y + 𝑸 b A
101 100 rspccva x A x + 𝑸 b A y A y + 𝑸 b A
102 oveq2 1 𝑸 𝑸 b = b y + 𝑸 1 𝑸 𝑸 b = y + 𝑸 b
103 102 eleq1d 1 𝑸 𝑸 b = b y + 𝑸 1 𝑸 𝑸 b A y + 𝑸 b A
104 103 biimpar 1 𝑸 𝑸 b = b y + 𝑸 b A y + 𝑸 1 𝑸 𝑸 b A
105 98 101 104 syl2an b 𝑸 x A x + 𝑸 b A y A y + 𝑸 1 𝑸 𝑸 b A
106 105 3impb b 𝑸 x A x + 𝑸 b A y A y + 𝑸 1 𝑸 𝑸 b A
107 3simpa b 𝑸 x A x + 𝑸 b A y A b 𝑸 x A x + 𝑸 b A
108 oveq1 x = y + 𝑸 z 1 𝑜 𝑸 b x + 𝑸 b = y + 𝑸 z 1 𝑜 𝑸 b + 𝑸 b
109 108 eleq1d x = y + 𝑸 z 1 𝑜 𝑸 b x + 𝑸 b A y + 𝑸 z 1 𝑜 𝑸 b + 𝑸 b A
110 109 rspccva x A x + 𝑸 b A y + 𝑸 z 1 𝑜 𝑸 b A y + 𝑸 z 1 𝑜 𝑸 b + 𝑸 b A
111 addassnq y + 𝑸 z 1 𝑜 𝑸 b + 𝑸 b = y + 𝑸 z 1 𝑜 𝑸 b + 𝑸 b
112 opex z 1 𝑜 V
113 1nq 1 𝑸 𝑸
114 113 elexi 1 𝑸 V
115 distrnq v 𝑸 x + 𝑸 y = v 𝑸 x + 𝑸 v 𝑸 y
116 112 114 43 46 115 caovdir z 1 𝑜 + 𝑸 1 𝑸 𝑸 b = z 1 𝑜 𝑸 b + 𝑸 1 𝑸 𝑸 b
117 116 a1i z 𝑵 b 𝑸 z 1 𝑜 + 𝑸 1 𝑸 𝑸 b = z 1 𝑜 𝑸 b + 𝑸 1 𝑸 𝑸 b
118 addpqnq z 1 𝑜 𝑸 1 𝑸 𝑸 z 1 𝑜 + 𝑸 1 𝑸 = / 𝑸 z 1 𝑜 + 𝑝𝑸 1 𝑸
119 62 113 118 sylancl z 𝑵 z 1 𝑜 + 𝑸 1 𝑸 = / 𝑸 z 1 𝑜 + 𝑝𝑸 1 𝑸
120 80 oveq2i z 1 𝑜 + 𝑝𝑸 1 𝑸 = z 1 𝑜 + 𝑝𝑸 1 𝑜 1 𝑜
121 1pi 1 𝑜 𝑵
122 addpipq z 𝑵 1 𝑜 𝑵 1 𝑜 𝑵 1 𝑜 𝑵 z 1 𝑜 + 𝑝𝑸 1 𝑜 1 𝑜 = z 𝑵 1 𝑜 + 𝑵 1 𝑜 𝑵 1 𝑜 1 𝑜 𝑵 1 𝑜
123 121 121 122 mpanr12 z 𝑵 1 𝑜 𝑵 z 1 𝑜 + 𝑝𝑸 1 𝑜 1 𝑜 = z 𝑵 1 𝑜 + 𝑵 1 𝑜 𝑵 1 𝑜 1 𝑜 𝑵 1 𝑜
124 121 123 mpan2 z 𝑵 z 1 𝑜 + 𝑝𝑸 1 𝑜 1 𝑜 = z 𝑵 1 𝑜 + 𝑵 1 𝑜 𝑵 1 𝑜 1 𝑜 𝑵 1 𝑜
125 120 124 eqtrid z 𝑵 z 1 𝑜 + 𝑝𝑸 1 𝑸 = z 𝑵 1 𝑜 + 𝑵 1 𝑜 𝑵 1 𝑜 1 𝑜 𝑵 1 𝑜
126 mulidpi z 𝑵 z 𝑵 1 𝑜 = z
127 mulidpi 1 𝑜 𝑵 1 𝑜 𝑵 1 𝑜 = 1 𝑜
128 121 127 mp1i z 𝑵 1 𝑜 𝑵 1 𝑜 = 1 𝑜
129 126 128 oveq12d z 𝑵 z 𝑵 1 𝑜 + 𝑵 1 𝑜 𝑵 1 𝑜 = z + 𝑵 1 𝑜
130 129 128 opeq12d z 𝑵 z 𝑵 1 𝑜 + 𝑵 1 𝑜 𝑵 1 𝑜 1 𝑜 𝑵 1 𝑜 = z + 𝑵 1 𝑜 1 𝑜
131 125 130 eqtrd z 𝑵 z 1 𝑜 + 𝑝𝑸 1 𝑸 = z + 𝑵 1 𝑜 1 𝑜
132 131 fveq2d z 𝑵 / 𝑸 z 1 𝑜 + 𝑝𝑸 1 𝑸 = / 𝑸 z + 𝑵 1 𝑜 1 𝑜
133 addclpi z 𝑵 1 𝑜 𝑵 z + 𝑵 1 𝑜 𝑵
134 121 133 mpan2 z 𝑵 z + 𝑵 1 𝑜 𝑵
135 pinq z + 𝑵 1 𝑜 𝑵 z + 𝑵 1 𝑜 1 𝑜 𝑸
136 nqerid z + 𝑵 1 𝑜 1 𝑜 𝑸 / 𝑸 z + 𝑵 1 𝑜 1 𝑜 = z + 𝑵 1 𝑜 1 𝑜
137 134 135 136 3syl z 𝑵 / 𝑸 z + 𝑵 1 𝑜 1 𝑜 = z + 𝑵 1 𝑜 1 𝑜
138 119 132 137 3eqtrd z 𝑵 z 1 𝑜 + 𝑸 1 𝑸 = z + 𝑵 1 𝑜 1 𝑜
139 138 adantr z 𝑵 b 𝑸 z 1 𝑜 + 𝑸 1 𝑸 = z + 𝑵 1 𝑜 1 𝑜
140 139 oveq1d z 𝑵 b 𝑸 z 1 𝑜 + 𝑸 1 𝑸 𝑸 b = z + 𝑵 1 𝑜 1 𝑜 𝑸 b
141 98 adantl z 𝑵 b 𝑸 1 𝑸 𝑸 b = b
142 141 oveq2d z 𝑵 b 𝑸 z 1 𝑜 𝑸 b + 𝑸 1 𝑸 𝑸 b = z 1 𝑜 𝑸 b + 𝑸 b
143 117 140 142 3eqtr3rd z 𝑵 b 𝑸 z 1 𝑜 𝑸 b + 𝑸 b = z + 𝑵 1 𝑜 1 𝑜 𝑸 b
144 143 oveq2d z 𝑵 b 𝑸 y + 𝑸 z 1 𝑜 𝑸 b + 𝑸 b = y + 𝑸 z + 𝑵 1 𝑜 1 𝑜 𝑸 b
145 111 144 eqtrid z 𝑵 b 𝑸 y + 𝑸 z 1 𝑜 𝑸 b + 𝑸 b = y + 𝑸 z + 𝑵 1 𝑜 1 𝑜 𝑸 b
146 145 eleq1d z 𝑵 b 𝑸 y + 𝑸 z 1 𝑜 𝑸 b + 𝑸 b A y + 𝑸 z + 𝑵 1 𝑜 1 𝑜 𝑸 b A
147 110 146 syl5ib z 𝑵 b 𝑸 x A x + 𝑸 b A y + 𝑸 z 1 𝑜 𝑸 b A y + 𝑸 z + 𝑵 1 𝑜 1 𝑜 𝑸 b A
148 147 expd z 𝑵 b 𝑸 x A x + 𝑸 b A y + 𝑸 z 1 𝑜 𝑸 b A y + 𝑸 z + 𝑵 1 𝑜 1 𝑜 𝑸 b A
149 148 expimpd z 𝑵 b 𝑸 x A x + 𝑸 b A y + 𝑸 z 1 𝑜 𝑸 b A y + 𝑸 z + 𝑵 1 𝑜 1 𝑜 𝑸 b A
150 107 149 syl5 z 𝑵 b 𝑸 x A x + 𝑸 b A y A y + 𝑸 z 1 𝑜 𝑸 b A y + 𝑸 z + 𝑵 1 𝑜 1 𝑜 𝑸 b A
151 150 a2d z 𝑵 b 𝑸 x A x + 𝑸 b A y A y + 𝑸 z 1 𝑜 𝑸 b A b 𝑸 x A x + 𝑸 b A y A y + 𝑸 z + 𝑵 1 𝑜 1 𝑜 𝑸 b A
152 85 90 95 90 106 151 indpi z 𝑵 b 𝑸 x A x + 𝑸 b A y A y + 𝑸 z 1 𝑜 𝑸 b A
153 152 imp z 𝑵 b 𝑸 x A x + 𝑸 b A y A y + 𝑸 z 1 𝑜 𝑸 b A
154 61 39 78 67 153 syl13anc A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 y + 𝑸 z 1 𝑜 𝑸 b A
155 prcdnq A 𝑷 y + 𝑸 z 1 𝑜 𝑸 b A w < 𝑸 y + 𝑸 z 1 𝑜 𝑸 b w A
156 66 154 155 syl2anc A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 w < 𝑸 y + 𝑸 z 1 𝑜 𝑸 b w A
157 77 156 mpd A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A z 𝑵 w 𝑸 * 𝑸 b < 𝑸 z 1 𝑜 w A
158 38 157 rexlimddv A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A w A
159 158 expr A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y A w A
160 159 exlimdv A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 y y A w A
161 30 160 mpd A 𝑷 b 𝑸 x A x + 𝑸 b A w 𝑸 w A
162 26 161 eqelssd A 𝑷 b 𝑸 x A x + 𝑸 b A A = 𝑸
163 162 3expia A 𝑷 b 𝑸 x A x + 𝑸 b A A = 𝑸
164 25 163 mtod A 𝑷 b 𝑸 ¬ x A x + 𝑸 b A
165 164 expcom b 𝑸 A 𝑷 ¬ x A x + 𝑸 b A
166 21 165 vtoclga B 𝑸 A 𝑷 ¬ x A x + 𝑸 B A
167 166 com12 A 𝑷 B 𝑸 ¬ x A x + 𝑸 B A
168 5 16 167 3syld A 𝑷 x A x + 𝑸 B A ¬ x A x + 𝑸 B A
169 168 pm2.01d A 𝑷 ¬ x A x + 𝑸 B A
170 rexnal x A ¬ x + 𝑸 B A ¬ x A x + 𝑸 B A
171 169 170 sylibr A 𝑷 x A ¬ x + 𝑸 B A