Metamath Proof Explorer


Theorem prlem934

Description: Lemma 9-3.4 of Gleason p. 122. (Contributed by NM, 25-Mar-1996) (Revised by Mario Carneiro, 11-May-2013) (New usage is discouraged.)

Ref Expression
Hypothesis prlem934.1 BV
Assertion prlem934 A𝑷xA¬x+𝑸BA

Proof

Step Hyp Ref Expression
1 prlem934.1 BV
2 prn0 A𝑷A
3 r19.2z AxAx+𝑸BAxAx+𝑸BA
4 3 ex AxAx+𝑸BAxAx+𝑸BA
5 2 4 syl A𝑷xAx+𝑸BAxAx+𝑸BA
6 prpssnq A𝑷A𝑸
7 6 pssssd A𝑷A𝑸
8 7 sseld A𝑷x+𝑸BAx+𝑸B𝑸
9 addnqf +𝑸:𝑸×𝑸𝑸
10 9 fdmi dom+𝑸=𝑸×𝑸
11 0nnq ¬𝑸
12 10 11 ndmovrcl x+𝑸B𝑸x𝑸B𝑸
13 12 simprd x+𝑸B𝑸B𝑸
14 8 13 syl6com x+𝑸BAA𝑷B𝑸
15 14 rexlimivw xAx+𝑸BAA𝑷B𝑸
16 15 com12 A𝑷xAx+𝑸BAB𝑸
17 oveq2 b=Bx+𝑸b=x+𝑸B
18 17 eleq1d b=Bx+𝑸bAx+𝑸BA
19 18 ralbidv b=BxAx+𝑸bAxAx+𝑸BA
20 19 notbid b=B¬xAx+𝑸bA¬xAx+𝑸BA
21 20 imbi2d b=BA𝑷¬xAx+𝑸bAA𝑷¬xAx+𝑸BA
22 dfpss2 A𝑸A𝑸¬A=𝑸
23 6 22 sylib A𝑷A𝑸¬A=𝑸
24 23 simprd A𝑷¬A=𝑸
25 24 adantr A𝑷b𝑸¬A=𝑸
26 7 3ad2ant1 A𝑷b𝑸xAx+𝑸bAA𝑸
27 simpl1 A𝑷b𝑸xAx+𝑸bAw𝑸A𝑷
28 n0 AyyA
29 2 28 sylib A𝑷yyA
30 27 29 syl A𝑷b𝑸xAx+𝑸bAw𝑸yyA
31 simprl A𝑷b𝑸xAx+𝑸bAw𝑸yAw𝑸
32 simpl2 A𝑷b𝑸xAx+𝑸bAw𝑸yAb𝑸
33 recclnq b𝑸*𝑸b𝑸
34 mulclnq w𝑸*𝑸b𝑸w𝑸*𝑸b𝑸
35 archnq w𝑸*𝑸b𝑸z𝑵w𝑸*𝑸b<𝑸z1𝑜
36 34 35 syl w𝑸*𝑸b𝑸z𝑵w𝑸*𝑸b<𝑸z1𝑜
37 33 36 sylan2 w𝑸b𝑸z𝑵w𝑸*𝑸b<𝑸z1𝑜
38 31 32 37 syl2anc A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜
39 simpll2 A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜b𝑸
40 simplrl A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜w𝑸
41 simprr A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜w𝑸*𝑸b<𝑸z1𝑜
42 ltmnq b𝑸w𝑸*𝑸b<𝑸z1𝑜b𝑸w𝑸*𝑸b<𝑸b𝑸z1𝑜
43 vex bV
44 vex wV
45 fvex *𝑸bV
46 mulcomnq v𝑸x=x𝑸v
47 mulassnq v𝑸x𝑸y=v𝑸x𝑸y
48 43 44 45 46 47 caov12 b𝑸w𝑸*𝑸b=w𝑸b𝑸*𝑸b
49 mulcomnq b𝑸z1𝑜=z1𝑜𝑸b
50 48 49 breq12i b𝑸w𝑸*𝑸b<𝑸b𝑸z1𝑜w𝑸b𝑸*𝑸b<𝑸z1𝑜𝑸b
51 42 50 bitrdi b𝑸w𝑸*𝑸b<𝑸z1𝑜w𝑸b𝑸*𝑸b<𝑸z1𝑜𝑸b
52 51 adantr b𝑸w𝑸w𝑸*𝑸b<𝑸z1𝑜w𝑸b𝑸*𝑸b<𝑸z1𝑜𝑸b
53 recidnq b𝑸b𝑸*𝑸b=1𝑸
54 53 oveq2d b𝑸w𝑸b𝑸*𝑸b=w𝑸1𝑸
55 mulidnq w𝑸w𝑸1𝑸=w
56 54 55 sylan9eq b𝑸w𝑸w𝑸b𝑸*𝑸b=w
57 56 breq1d b𝑸w𝑸w𝑸b𝑸*𝑸b<𝑸z1𝑜𝑸bw<𝑸z1𝑜𝑸b
58 52 57 bitrd b𝑸w𝑸w𝑸*𝑸b<𝑸z1𝑜w<𝑸z1𝑜𝑸b
59 58 biimpa b𝑸w𝑸w𝑸*𝑸b<𝑸z1𝑜w<𝑸z1𝑜𝑸b
60 39 40 41 59 syl21anc A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜w<𝑸z1𝑜𝑸b
61 simprl A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜z𝑵
62 pinq z𝑵z1𝑜𝑸
63 mulclnq z1𝑜𝑸b𝑸z1𝑜𝑸b𝑸
64 62 63 sylan z𝑵b𝑸z1𝑜𝑸b𝑸
65 61 39 64 syl2anc A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜z1𝑜𝑸b𝑸
66 simpll1 A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜A𝑷
67 simplrr A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜yA
68 elprnq A𝑷yAy𝑸
69 66 67 68 syl2anc A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜y𝑸
70 ltaddnq z1𝑜𝑸b𝑸y𝑸z1𝑜𝑸b<𝑸z1𝑜𝑸b+𝑸y
71 addcomnq z1𝑜𝑸b+𝑸y=y+𝑸z1𝑜𝑸b
72 70 71 breqtrdi z1𝑜𝑸b𝑸y𝑸z1𝑜𝑸b<𝑸y+𝑸z1𝑜𝑸b
73 65 69 72 syl2anc A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜z1𝑜𝑸b<𝑸y+𝑸z1𝑜𝑸b
74 ltsonq <𝑸Or𝑸
75 ltrelnq <𝑸𝑸×𝑸
76 74 75 sotri w<𝑸z1𝑜𝑸bz1𝑜𝑸b<𝑸y+𝑸z1𝑜𝑸bw<𝑸y+𝑸z1𝑜𝑸b
77 60 73 76 syl2anc A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜w<𝑸y+𝑸z1𝑜𝑸b
78 simpll3 A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜xAx+𝑸bA
79 opeq1 w=1𝑜w1𝑜=1𝑜1𝑜
80 df-1nq 1𝑸=1𝑜1𝑜
81 79 80 eqtr4di w=1𝑜w1𝑜=1𝑸
82 81 oveq1d w=1𝑜w1𝑜𝑸b=1𝑸𝑸b
83 82 oveq2d w=1𝑜y+𝑸w1𝑜𝑸b=y+𝑸1𝑸𝑸b
84 83 eleq1d w=1𝑜y+𝑸w1𝑜𝑸bAy+𝑸1𝑸𝑸bA
85 84 imbi2d w=1𝑜b𝑸xAx+𝑸bAyAy+𝑸w1𝑜𝑸bAb𝑸xAx+𝑸bAyAy+𝑸1𝑸𝑸bA
86 opeq1 w=zw1𝑜=z1𝑜
87 86 oveq1d w=zw1𝑜𝑸b=z1𝑜𝑸b
88 87 oveq2d w=zy+𝑸w1𝑜𝑸b=y+𝑸z1𝑜𝑸b
89 88 eleq1d w=zy+𝑸w1𝑜𝑸bAy+𝑸z1𝑜𝑸bA
90 89 imbi2d w=zb𝑸xAx+𝑸bAyAy+𝑸w1𝑜𝑸bAb𝑸xAx+𝑸bAyAy+𝑸z1𝑜𝑸bA
91 opeq1 w=z+𝑵1𝑜w1𝑜=z+𝑵1𝑜1𝑜
92 91 oveq1d w=z+𝑵1𝑜w1𝑜𝑸b=z+𝑵1𝑜1𝑜𝑸b
93 92 oveq2d w=z+𝑵1𝑜y+𝑸w1𝑜𝑸b=y+𝑸z+𝑵1𝑜1𝑜𝑸b
94 93 eleq1d w=z+𝑵1𝑜y+𝑸w1𝑜𝑸bAy+𝑸z+𝑵1𝑜1𝑜𝑸bA
95 94 imbi2d w=z+𝑵1𝑜b𝑸xAx+𝑸bAyAy+𝑸w1𝑜𝑸bAb𝑸xAx+𝑸bAyAy+𝑸z+𝑵1𝑜1𝑜𝑸bA
96 mulcomnq 1𝑸𝑸b=b𝑸1𝑸
97 mulidnq b𝑸b𝑸1𝑸=b
98 96 97 eqtrid b𝑸1𝑸𝑸b=b
99 oveq1 x=yx+𝑸b=y+𝑸b
100 99 eleq1d x=yx+𝑸bAy+𝑸bA
101 100 rspccva xAx+𝑸bAyAy+𝑸bA
102 oveq2 1𝑸𝑸b=by+𝑸1𝑸𝑸b=y+𝑸b
103 102 eleq1d 1𝑸𝑸b=by+𝑸1𝑸𝑸bAy+𝑸bA
104 103 biimpar 1𝑸𝑸b=by+𝑸bAy+𝑸1𝑸𝑸bA
105 98 101 104 syl2an b𝑸xAx+𝑸bAyAy+𝑸1𝑸𝑸bA
106 105 3impb b𝑸xAx+𝑸bAyAy+𝑸1𝑸𝑸bA
107 3simpa b𝑸xAx+𝑸bAyAb𝑸xAx+𝑸bA
108 oveq1 x=y+𝑸z1𝑜𝑸bx+𝑸b=y+𝑸z1𝑜𝑸b+𝑸b
109 108 eleq1d x=y+𝑸z1𝑜𝑸bx+𝑸bAy+𝑸z1𝑜𝑸b+𝑸bA
110 109 rspccva xAx+𝑸bAy+𝑸z1𝑜𝑸bAy+𝑸z1𝑜𝑸b+𝑸bA
111 addassnq y+𝑸z1𝑜𝑸b+𝑸b=y+𝑸z1𝑜𝑸b+𝑸b
112 opex z1𝑜V
113 1nq 1𝑸𝑸
114 113 elexi 1𝑸V
115 distrnq v𝑸x+𝑸y=v𝑸x+𝑸v𝑸y
116 112 114 43 46 115 caovdir z1𝑜+𝑸1𝑸𝑸b=z1𝑜𝑸b+𝑸1𝑸𝑸b
117 116 a1i z𝑵b𝑸z1𝑜+𝑸1𝑸𝑸b=z1𝑜𝑸b+𝑸1𝑸𝑸b
118 addpqnq z1𝑜𝑸1𝑸𝑸z1𝑜+𝑸1𝑸=/𝑸z1𝑜+𝑝𝑸1𝑸
119 62 113 118 sylancl z𝑵z1𝑜+𝑸1𝑸=/𝑸z1𝑜+𝑝𝑸1𝑸
120 80 oveq2i z1𝑜+𝑝𝑸1𝑸=z1𝑜+𝑝𝑸1𝑜1𝑜
121 1pi 1𝑜𝑵
122 addpipq z𝑵1𝑜𝑵1𝑜𝑵1𝑜𝑵z1𝑜+𝑝𝑸1𝑜1𝑜=z𝑵1𝑜+𝑵1𝑜𝑵1𝑜1𝑜𝑵1𝑜
123 121 121 122 mpanr12 z𝑵1𝑜𝑵z1𝑜+𝑝𝑸1𝑜1𝑜=z𝑵1𝑜+𝑵1𝑜𝑵1𝑜1𝑜𝑵1𝑜
124 121 123 mpan2 z𝑵z1𝑜+𝑝𝑸1𝑜1𝑜=z𝑵1𝑜+𝑵1𝑜𝑵1𝑜1𝑜𝑵1𝑜
125 120 124 eqtrid z𝑵z1𝑜+𝑝𝑸1𝑸=z𝑵1𝑜+𝑵1𝑜𝑵1𝑜1𝑜𝑵1𝑜
126 mulidpi z𝑵z𝑵1𝑜=z
127 mulidpi 1𝑜𝑵1𝑜𝑵1𝑜=1𝑜
128 121 127 mp1i z𝑵1𝑜𝑵1𝑜=1𝑜
129 126 128 oveq12d z𝑵z𝑵1𝑜+𝑵1𝑜𝑵1𝑜=z+𝑵1𝑜
130 129 128 opeq12d z𝑵z𝑵1𝑜+𝑵1𝑜𝑵1𝑜1𝑜𝑵1𝑜=z+𝑵1𝑜1𝑜
131 125 130 eqtrd z𝑵z1𝑜+𝑝𝑸1𝑸=z+𝑵1𝑜1𝑜
132 131 fveq2d z𝑵/𝑸z1𝑜+𝑝𝑸1𝑸=/𝑸z+𝑵1𝑜1𝑜
133 addclpi z𝑵1𝑜𝑵z+𝑵1𝑜𝑵
134 121 133 mpan2 z𝑵z+𝑵1𝑜𝑵
135 pinq z+𝑵1𝑜𝑵z+𝑵1𝑜1𝑜𝑸
136 nqerid z+𝑵1𝑜1𝑜𝑸/𝑸z+𝑵1𝑜1𝑜=z+𝑵1𝑜1𝑜
137 134 135 136 3syl z𝑵/𝑸z+𝑵1𝑜1𝑜=z+𝑵1𝑜1𝑜
138 119 132 137 3eqtrd z𝑵z1𝑜+𝑸1𝑸=z+𝑵1𝑜1𝑜
139 138 adantr z𝑵b𝑸z1𝑜+𝑸1𝑸=z+𝑵1𝑜1𝑜
140 139 oveq1d z𝑵b𝑸z1𝑜+𝑸1𝑸𝑸b=z+𝑵1𝑜1𝑜𝑸b
141 98 adantl z𝑵b𝑸1𝑸𝑸b=b
142 141 oveq2d z𝑵b𝑸z1𝑜𝑸b+𝑸1𝑸𝑸b=z1𝑜𝑸b+𝑸b
143 117 140 142 3eqtr3rd z𝑵b𝑸z1𝑜𝑸b+𝑸b=z+𝑵1𝑜1𝑜𝑸b
144 143 oveq2d z𝑵b𝑸y+𝑸z1𝑜𝑸b+𝑸b=y+𝑸z+𝑵1𝑜1𝑜𝑸b
145 111 144 eqtrid z𝑵b𝑸y+𝑸z1𝑜𝑸b+𝑸b=y+𝑸z+𝑵1𝑜1𝑜𝑸b
146 145 eleq1d z𝑵b𝑸y+𝑸z1𝑜𝑸b+𝑸bAy+𝑸z+𝑵1𝑜1𝑜𝑸bA
147 110 146 syl5ib z𝑵b𝑸xAx+𝑸bAy+𝑸z1𝑜𝑸bAy+𝑸z+𝑵1𝑜1𝑜𝑸bA
148 147 expd z𝑵b𝑸xAx+𝑸bAy+𝑸z1𝑜𝑸bAy+𝑸z+𝑵1𝑜1𝑜𝑸bA
149 148 expimpd z𝑵b𝑸xAx+𝑸bAy+𝑸z1𝑜𝑸bAy+𝑸z+𝑵1𝑜1𝑜𝑸bA
150 107 149 syl5 z𝑵b𝑸xAx+𝑸bAyAy+𝑸z1𝑜𝑸bAy+𝑸z+𝑵1𝑜1𝑜𝑸bA
151 150 a2d z𝑵b𝑸xAx+𝑸bAyAy+𝑸z1𝑜𝑸bAb𝑸xAx+𝑸bAyAy+𝑸z+𝑵1𝑜1𝑜𝑸bA
152 85 90 95 90 106 151 indpi z𝑵b𝑸xAx+𝑸bAyAy+𝑸z1𝑜𝑸bA
153 152 imp z𝑵b𝑸xAx+𝑸bAyAy+𝑸z1𝑜𝑸bA
154 61 39 78 67 153 syl13anc A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜y+𝑸z1𝑜𝑸bA
155 prcdnq A𝑷y+𝑸z1𝑜𝑸bAw<𝑸y+𝑸z1𝑜𝑸bwA
156 66 154 155 syl2anc A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜w<𝑸y+𝑸z1𝑜𝑸bwA
157 77 156 mpd A𝑷b𝑸xAx+𝑸bAw𝑸yAz𝑵w𝑸*𝑸b<𝑸z1𝑜wA
158 38 157 rexlimddv A𝑷b𝑸xAx+𝑸bAw𝑸yAwA
159 158 expr A𝑷b𝑸xAx+𝑸bAw𝑸yAwA
160 159 exlimdv A𝑷b𝑸xAx+𝑸bAw𝑸yyAwA
161 30 160 mpd A𝑷b𝑸xAx+𝑸bAw𝑸wA
162 26 161 eqelssd A𝑷b𝑸xAx+𝑸bAA=𝑸
163 162 3expia A𝑷b𝑸xAx+𝑸bAA=𝑸
164 25 163 mtod A𝑷b𝑸¬xAx+𝑸bA
165 164 expcom b𝑸A𝑷¬xAx+𝑸bA
166 21 165 vtoclga B𝑸A𝑷¬xAx+𝑸BA
167 166 com12 A𝑷B𝑸¬xAx+𝑸BA
168 5 16 167 3syld A𝑷xAx+𝑸BA¬xAx+𝑸BA
169 168 pm2.01d A𝑷¬xAx+𝑸BA
170 rexnal xA¬x+𝑸BA¬xAx+𝑸BA
171 169 170 sylibr A𝑷xA¬x+𝑸BA