Metamath Proof Explorer


Theorem prm23ge5

Description: A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021)

Ref Expression
Assertion prm23ge5 P P = 2 P = 3 P 5

Proof

Step Hyp Ref Expression
1 ax-1 P = 2 P = 3 P 5 P P = 2 P = 3 P 5
2 3ioran ¬ P = 2 P = 3 P 5 ¬ P = 2 ¬ P = 3 ¬ P 5
3 3ianor ¬ 5 P 5 P ¬ 5 ¬ P ¬ 5 P
4 eluz2 P 5 5 P 5 P
5 3 4 xchnxbir ¬ P 5 ¬ 5 ¬ P ¬ 5 P
6 5nn 5
7 6 nnzi 5
8 7 pm2.24i ¬ 5 ¬ P = 2 ¬ P = 3 P P = 2 P = 3 P 5
9 pm2.24 P ¬ P P = 2 P = 3 P 5
10 prmz P P
11 9 10 syl11 ¬ P P P = 2 P = 3 P 5
12 11 a1d ¬ P ¬ P = 2 ¬ P = 3 P P = 2 P = 3 P 5
13 10 zred P P
14 5re 5
15 14 a1i P 5
16 13 15 ltnled P P < 5 ¬ 5 P
17 prm23lt5 P P < 5 P = 2 P = 3
18 ioran ¬ P = 2 P = 3 ¬ P = 2 ¬ P = 3
19 pm2.24 P = 2 P = 3 ¬ P = 2 P = 3 P = 2 P = 3 P 5
20 18 19 syl5bir P = 2 P = 3 ¬ P = 2 ¬ P = 3 P = 2 P = 3 P 5
21 17 20 syl P P < 5 ¬ P = 2 ¬ P = 3 P = 2 P = 3 P 5
22 21 ex P P < 5 ¬ P = 2 ¬ P = 3 P = 2 P = 3 P 5
23 16 22 sylbird P ¬ 5 P ¬ P = 2 ¬ P = 3 P = 2 P = 3 P 5
24 23 com3l ¬ 5 P ¬ P = 2 ¬ P = 3 P P = 2 P = 3 P 5
25 8 12 24 3jaoi ¬ 5 ¬ P ¬ 5 P ¬ P = 2 ¬ P = 3 P P = 2 P = 3 P 5
26 5 25 sylbi ¬ P 5 ¬ P = 2 ¬ P = 3 P P = 2 P = 3 P 5
27 26 com12 ¬ P = 2 ¬ P = 3 ¬ P 5 P P = 2 P = 3 P 5
28 27 3impia ¬ P = 2 ¬ P = 3 ¬ P 5 P P = 2 P = 3 P 5
29 2 28 sylbi ¬ P = 2 P = 3 P 5 P P = 2 P = 3 P 5
30 1 29 pm2.61i P P = 2 P = 3 P 5