Metamath Proof Explorer


Theorem prm23lt5

Description: A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021)

Ref Expression
Assertion prm23lt5 P P < 5 P = 2 P = 3

Proof

Step Hyp Ref Expression
1 prmnn P P
2 1 nnnn0d P P 0
3 2 adantr P P < 5 P 0
4 4nn0 4 0
5 4 a1i P P < 5 4 0
6 df-5 5 = 4 + 1
7 6 breq2i P < 5 P < 4 + 1
8 prmz P P
9 4z 4
10 zleltp1 P 4 P 4 P < 4 + 1
11 8 9 10 sylancl P P 4 P < 4 + 1
12 11 biimprd P P < 4 + 1 P 4
13 7 12 syl5bi P P < 5 P 4
14 13 imp P P < 5 P 4
15 elfz2nn0 P 0 4 P 0 4 0 P 4
16 3 5 14 15 syl3anbrc P P < 5 P 0 4
17 fz0to4untppr 0 4 = 0 1 2 3 4
18 17 eleq2i P 0 4 P 0 1 2 3 4
19 elun P 0 1 2 3 4 P 0 1 2 P 3 4
20 eltpi P 0 1 2 P = 0 P = 1 P = 2
21 nnne0 P P 0
22 eqneqall P = 0 P 0 P = 2 P = 3
23 22 com12 P 0 P = 0 P = 2 P = 3
24 1 21 23 3syl P P = 0 P = 2 P = 3
25 24 com12 P = 0 P P = 2 P = 3
26 eleq1 P = 1 P 1
27 1nprm ¬ 1
28 27 pm2.21i 1 P = 2 P = 3
29 26 28 syl6bi P = 1 P P = 2 P = 3
30 orc P = 2 P = 2 P = 3
31 30 a1d P = 2 P P = 2 P = 3
32 25 29 31 3jaoi P = 0 P = 1 P = 2 P P = 2 P = 3
33 20 32 syl P 0 1 2 P P = 2 P = 3
34 elpri P 3 4 P = 3 P = 4
35 olc P = 3 P = 2 P = 3
36 35 a1d P = 3 P P = 2 P = 3
37 eleq1 P = 4 P 4
38 4nprm ¬ 4
39 38 pm2.21i 4 P = 2 P = 3
40 37 39 syl6bi P = 4 P P = 2 P = 3
41 36 40 jaoi P = 3 P = 4 P P = 2 P = 3
42 34 41 syl P 3 4 P P = 2 P = 3
43 33 42 jaoi P 0 1 2 P 3 4 P P = 2 P = 3
44 19 43 sylbi P 0 1 2 3 4 P P = 2 P = 3
45 44 com12 P P 0 1 2 3 4 P = 2 P = 3
46 45 adantr P P < 5 P 0 1 2 3 4 P = 2 P = 3
47 18 46 syl5bi P P < 5 P 0 4 P = 2 P = 3
48 16 47 mpd P P < 5 P = 2 P = 3