Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Elementary properties
prm2orodd
Next ⟩
2prm
Metamath Proof Explorer
Ascii
Unicode
Theorem
prm2orodd
Description:
A prime number is either 2 or odd.
(Contributed by
AV
, 19-Jun-2021)
Ref
Expression
Assertion
prm2orodd
⊢
P
∈
ℙ
→
P
=
2
∨
¬
2
∥
P
Proof
Step
Hyp
Ref
Expression
1
2nn
⊢
2
∈
ℕ
2
dvdsprime
⊢
P
∈
ℙ
∧
2
∈
ℕ
→
2
∥
P
↔
2
=
P
∨
2
=
1
3
1
2
mpan2
⊢
P
∈
ℙ
→
2
∥
P
↔
2
=
P
∨
2
=
1
4
eqcom
⊢
2
=
P
↔
P
=
2
5
4
biimpi
⊢
2
=
P
→
P
=
2
6
1ne2
⊢
1
≠
2
7
necom
⊢
1
≠
2
↔
2
≠
1
8
eqneqall
⊢
2
=
1
→
2
≠
1
→
P
=
2
9
8
com12
⊢
2
≠
1
→
2
=
1
→
P
=
2
10
7
9
sylbi
⊢
1
≠
2
→
2
=
1
→
P
=
2
11
6
10
ax-mp
⊢
2
=
1
→
P
=
2
12
5
11
jaoi
⊢
2
=
P
∨
2
=
1
→
P
=
2
13
3
12
syl6bi
⊢
P
∈
ℙ
→
2
∥
P
→
P
=
2
14
13
con3d
⊢
P
∈
ℙ
→
¬
P
=
2
→
¬
2
∥
P
15
14
orrd
⊢
P
∈
ℙ
→
P
=
2
∨
¬
2
∥
P