Metamath Proof Explorer


Theorem prm2orodd

Description: A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021)

Ref Expression
Assertion prm2orodd P P = 2 ¬ 2 P

Proof

Step Hyp Ref Expression
1 2nn 2
2 dvdsprime P 2 2 P 2 = P 2 = 1
3 1 2 mpan2 P 2 P 2 = P 2 = 1
4 eqcom 2 = P P = 2
5 4 biimpi 2 = P P = 2
6 1ne2 1 2
7 necom 1 2 2 1
8 eqneqall 2 = 1 2 1 P = 2
9 8 com12 2 1 2 = 1 P = 2
10 7 9 sylbi 1 2 2 = 1 P = 2
11 6 10 ax-mp 2 = 1 P = 2
12 5 11 jaoi 2 = P 2 = 1 P = 2
13 3 12 syl6bi P 2 P P = 2
14 13 con3d P ¬ P = 2 ¬ 2 P
15 14 orrd P P = 2 ¬ 2 P