Description: A group with prime order is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cygctb.1 | |
|
| Assertion | prmcyg | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygctb.1 | |
|
| 2 | 1nprm | |
|
| 3 | simpr | |
|
| 4 | eqid | |
|
| 5 | 1 4 | grpidcl | |
| 6 | 5 | snssd | |
| 7 | 6 | ad2antrr | |
| 8 | 3 7 | eqssd | |
| 9 | 8 | fveq2d | |
| 10 | fvex | |
|
| 11 | hashsng | |
|
| 12 | 10 11 | ax-mp | |
| 13 | 9 12 | eqtrdi | |
| 14 | simplr | |
|
| 15 | 13 14 | eqeltrrd | |
| 16 | 15 | ex | |
| 17 | 2 16 | mtoi | |
| 18 | nss | |
|
| 19 | 17 18 | sylib | |
| 20 | eqid | |
|
| 21 | simpll | |
|
| 22 | simprl | |
|
| 23 | simprr | |
|
| 24 | 20 4 1 | odeq1 | |
| 25 | 21 22 24 | syl2anc | |
| 26 | velsn | |
|
| 27 | 25 26 | bitr4di | |
| 28 | 23 27 | mtbird | |
| 29 | prmnn | |
|
| 30 | 29 | ad2antlr | |
| 31 | 30 | nnnn0d | |
| 32 | 1 | fvexi | |
| 33 | hashclb | |
|
| 34 | 32 33 | ax-mp | |
| 35 | 31 34 | sylibr | |
| 36 | 1 20 | oddvds2 | |
| 37 | 21 35 22 36 | syl3anc | |
| 38 | simplr | |
|
| 39 | 1 20 | odcl2 | |
| 40 | 21 35 22 39 | syl3anc | |
| 41 | dvdsprime | |
|
| 42 | 38 40 41 | syl2anc | |
| 43 | 37 42 | mpbid | |
| 44 | 43 | ord | |
| 45 | 28 44 | mt3d | |
| 46 | 1 20 21 22 45 | iscygodd | |
| 47 | 19 46 | exlimddv | |