Step |
Hyp |
Ref |
Expression |
1 |
|
prmdiv.1 |
|
2 |
|
simpl1 |
|
3 |
|
prmz |
|
4 |
2 3
|
syl |
|
5 |
|
simpl2 |
|
6 |
|
elfzelz |
|
7 |
6
|
ad2antrl |
|
8 |
5 7
|
zmulcld |
|
9 |
|
1z |
|
10 |
|
zsubcl |
|
11 |
8 9 10
|
sylancl |
|
12 |
1
|
prmdiv |
|
13 |
12
|
adantr |
|
14 |
13
|
simpld |
|
15 |
|
elfzelz |
|
16 |
14 15
|
syl |
|
17 |
5 16
|
zmulcld |
|
18 |
|
zsubcl |
|
19 |
17 9 18
|
sylancl |
|
20 |
|
simprr |
|
21 |
13
|
simprd |
|
22 |
4 11 19 20 21
|
dvds2subd |
|
23 |
8
|
zcnd |
|
24 |
17
|
zcnd |
|
25 |
|
1cnd |
|
26 |
23 24 25
|
nnncan2d |
|
27 |
5
|
zcnd |
|
28 |
|
elfznn0 |
|
29 |
28
|
ad2antrl |
|
30 |
29
|
nn0red |
|
31 |
30
|
recnd |
|
32 |
16
|
zcnd |
|
33 |
27 31 32
|
subdid |
|
34 |
26 33
|
eqtr4d |
|
35 |
22 34
|
breqtrd |
|
36 |
|
simpl3 |
|
37 |
|
coprm |
|
38 |
2 5 37
|
syl2anc |
|
39 |
36 38
|
mpbid |
|
40 |
7 16
|
zsubcld |
|
41 |
|
coprmdvds |
|
42 |
4 5 40 41
|
syl3anc |
|
43 |
35 39 42
|
mp2and |
|
44 |
|
prmnn |
|
45 |
2 44
|
syl |
|
46 |
|
moddvds |
|
47 |
45 7 16 46
|
syl3anc |
|
48 |
43 47
|
mpbird |
|
49 |
45
|
nnrpd |
|
50 |
|
elfzle1 |
|
51 |
50
|
ad2antrl |
|
52 |
|
elfzle2 |
|
53 |
52
|
ad2antrl |
|
54 |
|
zltlem1 |
|
55 |
7 4 54
|
syl2anc |
|
56 |
53 55
|
mpbird |
|
57 |
|
modid |
|
58 |
30 49 51 56 57
|
syl22anc |
|
59 |
|
prmuz2 |
|
60 |
|
uznn0sub |
|
61 |
2 59 60
|
3syl |
|
62 |
|
zexpcl |
|
63 |
5 61 62
|
syl2anc |
|
64 |
63
|
zred |
|
65 |
|
modabs2 |
|
66 |
64 49 65
|
syl2anc |
|
67 |
1
|
oveq1i |
|
68 |
66 67 1
|
3eqtr4g |
|
69 |
48 58 68
|
3eqtr3d |
|
70 |
69
|
ex |
|
71 |
|
fz1ssfz0 |
|
72 |
71
|
sseli |
|
73 |
|
eleq1 |
|
74 |
72 73
|
syl5ibr |
|
75 |
|
oveq2 |
|
76 |
75
|
oveq1d |
|
77 |
76
|
breq2d |
|
78 |
77
|
biimprd |
|
79 |
74 78
|
anim12d |
|
80 |
12 79
|
syl5com |
|
81 |
70 80
|
impbid |
|