Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
breq2d |
|
3 |
2
|
bibi1d |
|
4 |
3
|
imbi2d |
|
5 |
|
oveq2 |
|
6 |
5
|
breq2d |
|
7 |
6
|
bibi1d |
|
8 |
7
|
imbi2d |
|
9 |
|
oveq2 |
|
10 |
9
|
breq2d |
|
11 |
10
|
bibi1d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
13
|
breq2d |
|
15 |
14
|
bibi1d |
|
16 |
15
|
imbi2d |
|
17 |
|
zcn |
|
18 |
17
|
adantl |
|
19 |
18
|
exp1d |
|
20 |
19
|
breq2d |
|
21 |
|
nnnn0 |
|
22 |
|
expp1 |
|
23 |
18 21 22
|
syl2an |
|
24 |
23
|
breq2d |
|
25 |
|
simpll |
|
26 |
|
simpr |
|
27 |
|
zexpcl |
|
28 |
26 21 27
|
syl2an |
|
29 |
|
simplr |
|
30 |
|
euclemma |
|
31 |
25 28 29 30
|
syl3anc |
|
32 |
24 31
|
bitrd |
|
33 |
|
orbi1 |
|
34 |
|
oridm |
|
35 |
33 34
|
bitrdi |
|
36 |
35
|
bibi2d |
|
37 |
32 36
|
syl5ibcom |
|
38 |
37
|
expcom |
|
39 |
38
|
a2d |
|
40 |
4 8 12 16 20 39
|
nnind |
|
41 |
40
|
impcom |
|
42 |
41
|
3impa |
|