Metamath Proof Explorer


Theorem prmdvdsexp

Description: A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014) (Revised by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion prmdvdsexp P A N P A N P A

Proof

Step Hyp Ref Expression
1 oveq2 m = 1 A m = A 1
2 1 breq2d m = 1 P A m P A 1
3 2 bibi1d m = 1 P A m P A P A 1 P A
4 3 imbi2d m = 1 P A P A m P A P A P A 1 P A
5 oveq2 m = k A m = A k
6 5 breq2d m = k P A m P A k
7 6 bibi1d m = k P A m P A P A k P A
8 7 imbi2d m = k P A P A m P A P A P A k P A
9 oveq2 m = k + 1 A m = A k + 1
10 9 breq2d m = k + 1 P A m P A k + 1
11 10 bibi1d m = k + 1 P A m P A P A k + 1 P A
12 11 imbi2d m = k + 1 P A P A m P A P A P A k + 1 P A
13 oveq2 m = N A m = A N
14 13 breq2d m = N P A m P A N
15 14 bibi1d m = N P A m P A P A N P A
16 15 imbi2d m = N P A P A m P A P A P A N P A
17 zcn A A
18 17 adantl P A A
19 18 exp1d P A A 1 = A
20 19 breq2d P A P A 1 P A
21 nnnn0 k k 0
22 expp1 A k 0 A k + 1 = A k A
23 18 21 22 syl2an P A k A k + 1 = A k A
24 23 breq2d P A k P A k + 1 P A k A
25 simpll P A k P
26 simpr P A A
27 zexpcl A k 0 A k
28 26 21 27 syl2an P A k A k
29 simplr P A k A
30 euclemma P A k A P A k A P A k P A
31 25 28 29 30 syl3anc P A k P A k A P A k P A
32 24 31 bitrd P A k P A k + 1 P A k P A
33 orbi1 P A k P A P A k P A P A P A
34 oridm P A P A P A
35 33 34 bitrdi P A k P A P A k P A P A
36 35 bibi2d P A k P A P A k + 1 P A k P A P A k + 1 P A
37 32 36 syl5ibcom P A k P A k P A P A k + 1 P A
38 37 expcom k P A P A k P A P A k + 1 P A
39 38 a2d k P A P A k P A P A P A k + 1 P A
40 4 8 12 16 20 39 nnind N P A P A N P A
41 40 impcom P A N P A N P A
42 41 3impa P A N P A N P A