Metamath Proof Explorer


Theorem prmdvdsexpb

Description: A prime divides a positive power of another iff they are equal. (Contributed by Paul Chapman, 30-Nov-2012) (Revised by Mario Carneiro, 24-Feb-2014)

Ref Expression
Assertion prmdvdsexpb P Q N P Q N P = Q

Proof

Step Hyp Ref Expression
1 prmz Q Q
2 prmdvdsexp P Q N P Q N P Q
3 1 2 syl3an2 P Q N P Q N P Q
4 prmuz2 P P 2
5 dvdsprm P 2 Q P Q P = Q
6 4 5 sylan P Q P Q P = Q
7 6 3adant3 P Q N P Q P = Q
8 3 7 bitrd P Q N P Q N P = Q