Metamath Proof Explorer


Theorem prmdvdsfi

Description: The set of prime divisors of a number is a finite set. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion prmdvdsfi A p | p A Fin

Proof

Step Hyp Ref Expression
1 fzfi 1 A Fin
2 prmssnn
3 rabss2 p | p A p | p A
4 2 3 ax-mp p | p A p | p A
5 dvdsssfz1 A p | p A 1 A
6 4 5 sstrid A p | p A 1 A
7 ssfi 1 A Fin p | p A 1 A p | p A Fin
8 1 6 7 sylancr A p | p A Fin