Metamath Proof Explorer


Theorem prmdvdsfz

Description: Each integer greater than 1 and less then or equal to a fixed number is divisible by a prime less then or equal to this fixed number. (Contributed by AV, 15-Aug-2020)

Ref Expression
Assertion prmdvdsfz N I 2 N p p N p I

Proof

Step Hyp Ref Expression
1 elfzuz I 2 N I 2
2 1 adantl N I 2 N I 2
3 exprmfct I 2 p p I
4 2 3 syl N I 2 N p p I
5 prmz p p
6 eluz2nn I 2 I
7 1 6 syl I 2 N I
8 7 adantl N I 2 N I
9 dvdsle p I p I p I
10 5 8 9 syl2anr N I 2 N p p I p I
11 elfzle2 I 2 N I N
12 11 ad2antlr N I 2 N p I N
13 5 zred p p
14 13 adantl N I 2 N p p
15 elfzelz I 2 N I
16 15 zred I 2 N I
17 16 ad2antlr N I 2 N p I
18 nnre N N
19 18 ad2antrr N I 2 N p N
20 letr p I N p I I N p N
21 14 17 19 20 syl3anc N I 2 N p p I I N p N
22 12 21 mpan2d N I 2 N p p I p N
23 10 22 syld N I 2 N p p I p N
24 23 ancrd N I 2 N p p I p N p I
25 24 reximdva N I 2 N p p I p p N p I
26 4 25 mpd N I 2 N p p N p I