Step |
Hyp |
Ref |
Expression |
1 |
|
fzfi |
|
2 |
|
diffi |
|
3 |
1 2
|
mp1i |
|
4 |
|
eldifi |
|
5 |
|
elfzelz |
|
6 |
4 5
|
syl |
|
7 |
|
1zzd |
|
8 |
6 7
|
ifcld |
|
9 |
8
|
adantl |
|
10 |
3 9
|
fprodzcl |
|
11 |
|
prmz |
|
12 |
11
|
adantl |
|
13 |
12
|
adantr |
|
14 |
|
dvdsmul2 |
|
15 |
10 13 14
|
syl2anc |
|
16 |
|
nnnn0 |
|
17 |
|
prmoval |
|
18 |
16 17
|
syl |
|
19 |
18
|
ad2antrr |
|
20 |
19
|
breq2d |
|
21 |
|
neldifsnd |
|
22 |
|
disjsn |
|
23 |
21 22
|
sylibr |
|
24 |
|
prmnn |
|
25 |
24
|
adantl |
|
26 |
25
|
anim1i |
|
27 |
|
nnz |
|
28 |
|
fznn |
|
29 |
27 28
|
syl |
|
30 |
29
|
ad2antrr |
|
31 |
26 30
|
mpbird |
|
32 |
|
difsnid |
|
33 |
32
|
eqcomd |
|
34 |
31 33
|
syl |
|
35 |
|
fzfid |
|
36 |
|
1zzd |
|
37 |
5 36
|
ifcld |
|
38 |
37
|
zcnd |
|
39 |
38
|
adantl |
|
40 |
23 34 35 39
|
fprodsplit |
|
41 |
|
simplr |
|
42 |
25
|
adantr |
|
43 |
42
|
nncnd |
|
44 |
|
1cnd |
|
45 |
43 44
|
ifcld |
|
46 |
|
eleq1w |
|
47 |
|
id |
|
48 |
46 47
|
ifbieq1d |
|
49 |
48
|
prodsn |
|
50 |
41 45 49
|
syl2anc |
|
51 |
|
simpr |
|
52 |
51
|
iftrued |
|
53 |
52
|
adantr |
|
54 |
50 53
|
eqtrd |
|
55 |
54
|
oveq2d |
|
56 |
40 55
|
eqtrd |
|
57 |
56
|
breq2d |
|
58 |
20 57
|
bitrd |
|
59 |
15 58
|
mpbird |
|
60 |
59
|
ex |
|
61 |
60
|
ralrimiva |
|