Metamath Proof Explorer


Theorem prmdvdsprmop

Description: The primorial of a number plus an integer greater than 1 and less then or equal to the number is divisible by a prime less then or equal to the number. (Contributed by AV, 15-Aug-2020) (Revised by AV, 28-Aug-2020)

Ref Expression
Assertion prmdvdsprmop N I 2 N p p N p I p # p N + I

Proof

Step Hyp Ref Expression
1 prmdvdsfz N I 2 N p p N p I
2 simprl N I 2 N p p N p I p N
3 simprr N I 2 N p p N p I p I
4 prmz p p
5 4 ad2antlr N I 2 N p p N p I p
6 nnnn0 N N 0
7 prmocl N 0 # p N
8 6 7 syl N # p N
9 8 nnzd N # p N
10 9 adantr N I 2 N # p N
11 10 adantr N I 2 N p # p N
12 11 adantr N I 2 N p p N p I # p N
13 elfzelz I 2 N I
14 13 ad2antlr N I 2 N p I
15 14 adantr N I 2 N p p N p I I
16 prmdvdsprmo N q q N q # p N
17 breq1 q = p q N p N
18 breq1 q = p q # p N p # p N
19 17 18 imbi12d q = p q N q # p N p N p # p N
20 19 rspcv p q q N q # p N p N p # p N
21 16 20 syl5com N p p N p # p N
22 21 adantr N I 2 N p p N p # p N
23 22 imp N I 2 N p p N p # p N
24 23 adantrd N I 2 N p p N p I p # p N
25 24 imp N I 2 N p p N p I p # p N
26 5 12 15 25 3 dvds2addd N I 2 N p p N p I p # p N + I
27 2 3 26 3jca N I 2 N p p N p I p N p I p # p N + I
28 27 ex N I 2 N p p N p I p N p I p # p N + I
29 28 reximdva N I 2 N p p N p I p p N p I p # p N + I
30 1 29 mpd N I 2 N p p N p I p # p N + I