Metamath Proof Explorer


Theorem prmdvdssqOLD

Description: Obsolete version of prmdvdssq as of 21-Aug-2024. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion prmdvdssqOLD P M P M P M 2

Proof

Step Hyp Ref Expression
1 zcn M M
2 1 sqvald M M 2 = M M
3 2 breq2d M P M 2 P M M
4 3 adantl P M P M 2 P M M
5 euclemma P M M P M M P M P M
6 5 3anidm23 P M P M M P M P M
7 oridm P M P M P M
8 6 7 bitrdi P M P M M P M
9 4 8 bitr2d P M P M P M 2