Metamath Proof Explorer


Theorem prmexpb

Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012)

Ref Expression
Assertion prmexpb P Q M N P M = Q N P = Q M = N

Proof

Step Hyp Ref Expression
1 prmz P P
2 1 adantr P Q P
3 2 3ad2ant1 P Q M N P M = Q N P
4 simp2l P Q M N P M = Q N M
5 iddvdsexp P M P P M
6 3 4 5 syl2anc P Q M N P M = Q N P P M
7 breq2 P M = Q N P P M P Q N
8 7 3ad2ant3 P Q M N P M = Q N P P M P Q N
9 simp1l P Q M N P M = Q N P
10 simp1r P Q M N P M = Q N Q
11 simp2r P Q M N P M = Q N N
12 prmdvdsexpb P Q N P Q N P = Q
13 9 10 11 12 syl3anc P Q M N P M = Q N P Q N P = Q
14 8 13 bitrd P Q M N P M = Q N P P M P = Q
15 6 14 mpbid P Q M N P M = Q N P = Q
16 3 zred P Q M N P M = Q N P
17 4 nnzd P Q M N P M = Q N M
18 11 nnzd P Q M N P M = Q N N
19 prmgt1 P 1 < P
20 19 ad2antrr P Q M N 1 < P
21 20 3adant3 P Q M N P M = Q N 1 < P
22 simp3 P Q M N P M = Q N P M = Q N
23 15 oveq1d P Q M N P M = Q N P N = Q N
24 22 23 eqtr4d P Q M N P M = Q N P M = P N
25 16 17 18 21 24 expcand P Q M N P M = Q N M = N
26 15 25 jca P Q M N P M = Q N P = Q M = N
27 26 3expia P Q M N P M = Q N P = Q M = N
28 oveq12 P = Q M = N P M = Q N
29 27 28 impbid1 P Q M N P M = Q N P = Q M = N