Metamath Proof Explorer


Theorem prmind

Description: Perform induction over the multiplicative structure of NN . If a property ph ( x ) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypotheses prmind.1 x = 1 φ ψ
prmind.2 x = y φ χ
prmind.3 x = z φ θ
prmind.4 x = y z φ τ
prmind.5 x = A φ η
prmind.6 ψ
prmind.7 x φ
prmind.8 y 2 z 2 χ θ τ
Assertion prmind A η

Proof

Step Hyp Ref Expression
1 prmind.1 x = 1 φ ψ
2 prmind.2 x = y φ χ
3 prmind.3 x = z φ θ
4 prmind.4 x = y z φ τ
5 prmind.5 x = A φ η
6 prmind.6 ψ
7 prmind.7 x φ
8 prmind.8 y 2 z 2 χ θ τ
9 7 adantr x y 1 x 1 χ φ
10 1 2 3 4 5 6 9 8 prmind2 A η