Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Elementary properties
prmind
Metamath Proof Explorer
Description: Perform induction over the multiplicative structure of NN . If a
property ph ( x ) holds for the primes and 1 and is preserved
under multiplication, then it holds for every positive integer.
(Contributed by Mario Carneiro , 20-Jun-2015)
Ref
Expression
Hypotheses
prmind.1
⊢ x = 1 → φ ↔ ψ
prmind.2
⊢ x = y → φ ↔ χ
prmind.3
⊢ x = z → φ ↔ θ
prmind.4
⊢ x = y ⁢ z → φ ↔ τ
prmind.5
⊢ x = A → φ ↔ η
prmind.6
⊢ ψ
prmind.7
⊢ x ∈ ℙ → φ
prmind.8
⊢ y ∈ ℤ ≥ 2 ∧ z ∈ ℤ ≥ 2 → χ ∧ θ → τ
Assertion
prmind
⊢ A ∈ ℕ → η
Proof
Step
Hyp
Ref
Expression
1
prmind.1
⊢ x = 1 → φ ↔ ψ
2
prmind.2
⊢ x = y → φ ↔ χ
3
prmind.3
⊢ x = z → φ ↔ θ
4
prmind.4
⊢ x = y ⁢ z → φ ↔ τ
5
prmind.5
⊢ x = A → φ ↔ η
6
prmind.6
⊢ ψ
7
prmind.7
⊢ x ∈ ℙ → φ
8
prmind.8
⊢ y ∈ ℤ ≥ 2 ∧ z ∈ ℤ ≥ 2 → χ ∧ θ → τ
9
7
adantr
⊢ x ∈ ℙ ∧ ∀ y ∈ 1 … x − 1 χ → φ
10
1 2 3 4 5 6 9 8
prmind2
⊢ A ∈ ℕ → η