Step |
Hyp |
Ref |
Expression |
1 |
|
prmirred.i |
|
2 |
|
zringbas |
|
3 |
1 2
|
irredcl |
|
4 |
|
elnn0 |
|
5 |
|
zringring |
|
6 |
|
zring0 |
|
7 |
1 6
|
irredn0 |
|
8 |
5 7
|
mpan |
|
9 |
8
|
necon2bi |
|
10 |
9
|
pm2.21d |
|
11 |
10
|
jao1i |
|
12 |
4 11
|
sylbi |
|
13 |
|
prmnn |
|
14 |
13
|
a1i |
|
15 |
1
|
prmirredlem |
|
16 |
15
|
a1i |
|
17 |
12 14 16
|
pm5.21ndd |
|
18 |
|
nn0re |
|
19 |
|
nn0ge0 |
|
20 |
18 19
|
absidd |
|
21 |
20
|
eleq1d |
|
22 |
17 21
|
bitr4d |
|
23 |
22
|
adantl |
|
24 |
1
|
prmirredlem |
|
25 |
24
|
adantl |
|
26 |
|
eqid |
|
27 |
1 26 2
|
irrednegb |
|
28 |
5 27
|
mpan |
|
29 |
|
zsubrg |
|
30 |
|
subrgsubg |
|
31 |
29 30
|
ax-mp |
|
32 |
|
df-zring |
|
33 |
|
eqid |
|
34 |
32 33 26
|
subginv |
|
35 |
31 34
|
mpan |
|
36 |
|
zcn |
|
37 |
|
cnfldneg |
|
38 |
36 37
|
syl |
|
39 |
35 38
|
eqtr3d |
|
40 |
39
|
eleq1d |
|
41 |
28 40
|
bitrd |
|
42 |
41
|
adantr |
|
43 |
|
zre |
|
44 |
43
|
adantr |
|
45 |
|
nnnn0 |
|
46 |
45
|
nn0ge0d |
|
47 |
46
|
adantl |
|
48 |
44
|
le0neg1d |
|
49 |
47 48
|
mpbird |
|
50 |
44 49
|
absnidd |
|
51 |
50
|
eleq1d |
|
52 |
25 42 51
|
3bitr4d |
|
53 |
52
|
adantrl |
|
54 |
|
elznn0nn |
|
55 |
54
|
biimpi |
|
56 |
23 53 55
|
mpjaodan |
|
57 |
3 56
|
biadanii |
|