Metamath Proof Explorer


Theorem prmirred

Description: The irreducible elements of ZZ are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypothesis prmirred.i I = Irred ring
Assertion prmirred A I A A

Proof

Step Hyp Ref Expression
1 prmirred.i I = Irred ring
2 zringbas = Base ring
3 1 2 irredcl A I A
4 elnn0 A 0 A A = 0
5 zringring ring Ring
6 zring0 0 = 0 ring
7 1 6 irredn0 ring Ring A I A 0
8 5 7 mpan A I A 0
9 8 necon2bi A = 0 ¬ A I
10 9 pm2.21d A = 0 A I A
11 10 jao1i A A = 0 A I A
12 4 11 sylbi A 0 A I A
13 prmnn A A
14 13 a1i A 0 A A
15 1 prmirredlem A A I A
16 15 a1i A 0 A A I A
17 12 14 16 pm5.21ndd A 0 A I A
18 nn0re A 0 A
19 nn0ge0 A 0 0 A
20 18 19 absidd A 0 A = A
21 20 eleq1d A 0 A A
22 17 21 bitr4d A 0 A I A
23 22 adantl A A 0 A I A
24 1 prmirredlem A A I A
25 24 adantl A A A I A
26 eqid inv g ring = inv g ring
27 1 26 2 irrednegb ring Ring A A I inv g ring A I
28 5 27 mpan A A I inv g ring A I
29 zsubrg SubRing fld
30 subrgsubg SubRing fld SubGrp fld
31 29 30 ax-mp SubGrp fld
32 df-zring ring = fld 𝑠
33 eqid inv g fld = inv g fld
34 32 33 26 subginv SubGrp fld A inv g fld A = inv g ring A
35 31 34 mpan A inv g fld A = inv g ring A
36 zcn A A
37 cnfldneg A inv g fld A = A
38 36 37 syl A inv g fld A = A
39 35 38 eqtr3d A inv g ring A = A
40 39 eleq1d A inv g ring A I A I
41 28 40 bitrd A A I A I
42 41 adantr A A A I A I
43 zre A A
44 43 adantr A A A
45 nnnn0 A A 0
46 45 nn0ge0d A 0 A
47 46 adantl A A 0 A
48 44 le0neg1d A A A 0 0 A
49 47 48 mpbird A A A 0
50 44 49 absnidd A A A = A
51 50 eleq1d A A A A
52 25 42 51 3bitr4d A A A I A
53 52 adantrl A A A A I A
54 elznn0nn A A 0 A A
55 54 biimpi A A 0 A A
56 23 53 55 mpjaodan A A I A
57 3 56 biadanii A I A A