| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmirred.i |
|
| 2 |
|
zringbas |
|
| 3 |
1 2
|
irredcl |
|
| 4 |
|
elnn0 |
|
| 5 |
|
zringring |
|
| 6 |
|
zring0 |
|
| 7 |
1 6
|
irredn0 |
|
| 8 |
5 7
|
mpan |
|
| 9 |
8
|
necon2bi |
|
| 10 |
9
|
pm2.21d |
|
| 11 |
10
|
jao1i |
|
| 12 |
4 11
|
sylbi |
|
| 13 |
|
prmnn |
|
| 14 |
13
|
a1i |
|
| 15 |
1
|
prmirredlem |
|
| 16 |
15
|
a1i |
|
| 17 |
12 14 16
|
pm5.21ndd |
|
| 18 |
|
nn0re |
|
| 19 |
|
nn0ge0 |
|
| 20 |
18 19
|
absidd |
|
| 21 |
20
|
eleq1d |
|
| 22 |
17 21
|
bitr4d |
|
| 23 |
22
|
adantl |
|
| 24 |
1
|
prmirredlem |
|
| 25 |
24
|
adantl |
|
| 26 |
|
eqid |
|
| 27 |
1 26 2
|
irrednegb |
|
| 28 |
5 27
|
mpan |
|
| 29 |
|
zsubrg |
|
| 30 |
|
subrgsubg |
|
| 31 |
29 30
|
ax-mp |
|
| 32 |
|
df-zring |
|
| 33 |
|
eqid |
|
| 34 |
32 33 26
|
subginv |
|
| 35 |
31 34
|
mpan |
|
| 36 |
|
zcn |
|
| 37 |
|
cnfldneg |
|
| 38 |
36 37
|
syl |
|
| 39 |
35 38
|
eqtr3d |
|
| 40 |
39
|
eleq1d |
|
| 41 |
28 40
|
bitrd |
|
| 42 |
41
|
adantr |
|
| 43 |
|
zre |
|
| 44 |
43
|
adantr |
|
| 45 |
|
nnnn0 |
|
| 46 |
45
|
nn0ge0d |
|
| 47 |
46
|
adantl |
|
| 48 |
44
|
le0neg1d |
|
| 49 |
47 48
|
mpbird |
|
| 50 |
44 49
|
absnidd |
|
| 51 |
50
|
eleq1d |
|
| 52 |
25 42 51
|
3bitr4d |
|
| 53 |
52
|
adantrl |
|
| 54 |
|
elznn0nn |
|
| 55 |
54
|
biimpi |
|
| 56 |
23 53 55
|
mpjaodan |
|
| 57 |
3 56
|
biadanii |
|