Step |
Hyp |
Ref |
Expression |
1 |
|
prmirred.i |
|
2 |
|
zringring |
|
3 |
|
zring1 |
|
4 |
1 3
|
irredn1 |
|
5 |
2 4
|
mpan |
|
6 |
5
|
anim2i |
|
7 |
|
eluz2b3 |
|
8 |
6 7
|
sylibr |
|
9 |
|
nnz |
|
10 |
9
|
ad2antrl |
|
11 |
|
simprr |
|
12 |
|
nnne0 |
|
13 |
12
|
ad2antrl |
|
14 |
|
nnz |
|
15 |
14
|
ad2antrr |
|
16 |
|
dvdsval2 |
|
17 |
10 13 15 16
|
syl3anc |
|
18 |
11 17
|
mpbid |
|
19 |
15
|
zcnd |
|
20 |
|
nncn |
|
21 |
20
|
ad2antrl |
|
22 |
19 21 13
|
divcan2d |
|
23 |
|
simplr |
|
24 |
22 23
|
eqeltrd |
|
25 |
|
zringbas |
|
26 |
|
eqid |
|
27 |
|
zringmulr |
|
28 |
1 25 26 27
|
irredmul |
|
29 |
10 18 24 28
|
syl3anc |
|
30 |
|
zringunit |
|
31 |
30
|
baib |
|
32 |
10 31
|
syl |
|
33 |
|
nnnn0 |
|
34 |
|
nn0re |
|
35 |
|
nn0ge0 |
|
36 |
34 35
|
absidd |
|
37 |
33 36
|
syl |
|
38 |
37
|
ad2antrl |
|
39 |
38
|
eqeq1d |
|
40 |
32 39
|
bitrd |
|
41 |
|
zringunit |
|
42 |
41
|
baib |
|
43 |
18 42
|
syl |
|
44 |
|
nnre |
|
45 |
44
|
ad2antrr |
|
46 |
|
simprl |
|
47 |
45 46
|
nndivred |
|
48 |
|
nnnn0 |
|
49 |
|
nn0ge0 |
|
50 |
48 49
|
syl |
|
51 |
50
|
ad2antrr |
|
52 |
46
|
nnred |
|
53 |
|
nngt0 |
|
54 |
53
|
ad2antrl |
|
55 |
|
divge0 |
|
56 |
45 51 52 54 55
|
syl22anc |
|
57 |
47 56
|
absidd |
|
58 |
57
|
eqeq1d |
|
59 |
|
1cnd |
|
60 |
19 21 59 13
|
divmuld |
|
61 |
21
|
mulid1d |
|
62 |
61
|
eqeq1d |
|
63 |
58 60 62
|
3bitrd |
|
64 |
43 63
|
bitrd |
|
65 |
40 64
|
orbi12d |
|
66 |
29 65
|
mpbid |
|
67 |
66
|
expr |
|
68 |
67
|
ralrimiva |
|
69 |
|
isprm2 |
|
70 |
8 68 69
|
sylanbrc |
|
71 |
|
prmz |
|
72 |
|
1nprm |
|
73 |
|
zringunit |
|
74 |
|
prmnn |
|
75 |
|
nn0re |
|
76 |
75 49
|
absidd |
|
77 |
74 48 76
|
3syl |
|
78 |
|
id |
|
79 |
77 78
|
eqeltrd |
|
80 |
|
eleq1 |
|
81 |
79 80
|
syl5ibcom |
|
82 |
81
|
adantld |
|
83 |
73 82
|
syl5bi |
|
84 |
72 83
|
mtoi |
|
85 |
|
dvdsmul1 |
|
86 |
85
|
ad2antlr |
|
87 |
|
simpr |
|
88 |
86 87
|
breqtrd |
|
89 |
|
simplrl |
|
90 |
71
|
ad2antrr |
|
91 |
|
absdvdsb |
|
92 |
89 90 91
|
syl2anc |
|
93 |
88 92
|
mpbid |
|
94 |
|
breq1 |
|
95 |
|
eqeq1 |
|
96 |
|
eqeq1 |
|
97 |
95 96
|
orbi12d |
|
98 |
94 97
|
imbi12d |
|
99 |
69
|
simprbi |
|
100 |
99
|
ad2antrr |
|
101 |
89
|
zcnd |
|
102 |
74
|
ad2antrr |
|
103 |
102
|
nnne0d |
|
104 |
|
simplrr |
|
105 |
104
|
zcnd |
|
106 |
105
|
mul02d |
|
107 |
103 87 106
|
3netr4d |
|
108 |
|
oveq1 |
|
109 |
108
|
necon3i |
|
110 |
107 109
|
syl |
|
111 |
101 110
|
absne0d |
|
112 |
111
|
neneqd |
|
113 |
|
nn0abscl |
|
114 |
89 113
|
syl |
|
115 |
|
elnn0 |
|
116 |
114 115
|
sylib |
|
117 |
116
|
ord |
|
118 |
112 117
|
mt3d |
|
119 |
98 100 118
|
rspcdva |
|
120 |
93 119
|
mpd |
|
121 |
|
zringunit |
|
122 |
121
|
baib |
|
123 |
89 122
|
syl |
|
124 |
104 31
|
syl |
|
125 |
105
|
abscld |
|
126 |
125
|
recnd |
|
127 |
|
1cnd |
|
128 |
101
|
abscld |
|
129 |
128
|
recnd |
|
130 |
126 127 129 111
|
mulcand |
|
131 |
87
|
fveq2d |
|
132 |
101 105
|
absmuld |
|
133 |
77
|
ad2antrr |
|
134 |
131 132 133
|
3eqtr3d |
|
135 |
129
|
mulid1d |
|
136 |
134 135
|
eqeq12d |
|
137 |
|
eqcom |
|
138 |
136 137
|
bitrdi |
|
139 |
124 130 138
|
3bitr2d |
|
140 |
123 139
|
orbi12d |
|
141 |
120 140
|
mpbird |
|
142 |
141
|
ex |
|
143 |
142
|
ralrimivva |
|
144 |
25 26 1 27
|
isirred2 |
|
145 |
71 84 143 144
|
syl3anbrc |
|
146 |
145
|
adantl |
|
147 |
70 146
|
impbida |
|