Metamath Proof Explorer


Theorem prmlem1

Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses prmlem1.n N
prmlem1.gt 1 < N
prmlem1.2 ¬ 2 N
prmlem1.3 ¬ 3 N
prmlem1.lt N < 25
Assertion prmlem1 N

Proof

Step Hyp Ref Expression
1 prmlem1.n N
2 prmlem1.gt 1 < N
3 prmlem1.2 ¬ 2 N
4 prmlem1.3 ¬ 3 N
5 prmlem1.lt N < 25
6 eluzelre x 5 x
7 6 resqcld x 5 x 2
8 eluzle x 5 5 x
9 5re 5
10 5nn0 5 0
11 10 nn0ge0i 0 5
12 le2sq2 5 0 5 x 5 x 5 2 x 2
13 9 11 12 mpanl12 x 5 x 5 2 x 2
14 6 8 13 syl2anc x 5 5 2 x 2
15 1 nnrei N
16 9 resqcli 5 2
17 5cn 5
18 17 sqvali 5 2 = 5 5
19 5t5e25 5 5 = 25
20 18 19 eqtri 5 2 = 25
21 5 20 breqtrri N < 5 2
22 ltletr N 5 2 x 2 N < 5 2 5 2 x 2 N < x 2
23 21 22 mpani N 5 2 x 2 5 2 x 2 N < x 2
24 15 16 23 mp3an12 x 2 5 2 x 2 N < x 2
25 7 14 24 sylc x 5 N < x 2
26 ltnle N x 2 N < x 2 ¬ x 2 N
27 15 7 26 sylancr x 5 N < x 2 ¬ x 2 N
28 25 27 mpbid x 5 ¬ x 2 N
29 28 pm2.21d x 5 x 2 N ¬ x N
30 29 adantld x 5 x 2 x 2 N ¬ x N
31 30 adantl ¬ 2 5 x 5 x 2 x 2 N ¬ x N
32 1 2 3 4 31 prmlem1a N