Metamath Proof Explorer


Theorem prmndvdsfaclt

Description: A prime number does not divide the factorial of a nonnegative integer less than the prime number. (Contributed by AV, 13-Jul-2021)

Ref Expression
Assertion prmndvdsfaclt P N 0 N < P ¬ P N !

Proof

Step Hyp Ref Expression
1 nn0re N 0 N
2 prmnn P P
3 2 nnred P P
4 ltnle N P N < P ¬ P N
5 1 3 4 syl2anr P N 0 N < P ¬ P N
6 prmfac1 N 0 P P N ! P N
7 6 3exp N 0 P P N ! P N
8 7 impcom P N 0 P N ! P N
9 8 con3d P N 0 ¬ P N ¬ P N !
10 5 9 sylbid P N 0 N < P ¬ P N !