Metamath Proof Explorer


Theorem prmo2

Description: The primorial of 2. (Contributed by AV, 28-Aug-2020)

Ref Expression
Assertion prmo2 # p 2 = 2

Proof

Step Hyp Ref Expression
1 2nn 2
2 prmonn2 2 # p 2 = if 2 # p 2 1 2 # p 2 1
3 1 2 ax-mp # p 2 = if 2 # p 2 1 2 # p 2 1
4 2prm 2
5 4 iftruei if 2 # p 2 1 2 # p 2 1 = # p 2 1 2
6 2m1e1 2 1 = 1
7 6 fveq2i # p 2 1 = # p 1
8 prmo1 # p 1 = 1
9 7 8 eqtri # p 2 1 = 1
10 9 oveq1i # p 2 1 2 = 1 2
11 2cn 2
12 11 mulid2i 1 2 = 2
13 10 12 eqtri # p 2 1 2 = 2
14 5 13 eqtri if 2 # p 2 1 2 # p 2 1 = 2
15 3 14 eqtri # p 2 = 2